
www.crs4.it/vic/

Scalable Interactive Exploration
of Massive Volumetric Data

Enrico Gobbetti

Director, CRS4/ViC

gobbetti@crs4.it

October 2015

mailto:gobbetti@crs4.it

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Big Data

• Explosion of data in all areas of
science, engineering, health and
business applications, driven by
improvements in hardware and
information processing technology

– Acquisition: 3D imaging, remote sensing,
range scanners, massive picture collections,
ubiquitous sensing devices, …

– Computing: modeling, simulations…

• Need for novel tools, techniques, and
expertise!

• Our focus is 3D data

– Wide and deep impact on a variety of
domains

2

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

64 x 64 x 64

[Sabella 1988]

256 x 256 x 256

[Krüger 2003]

21494 x 25790 x 1850

[Hadwiger 2012]

1988 2012200620001994

1TVox

In this talk: scalar volumes

3

• Goal: interactively explore
potentially unlimited
volumetric datasets on
single PCs

2048x1024x1080

[Gobbetti 2008]

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

In this talk: scalar volumes

4

Connectome (Bobby Kasthuri, Harvard):

~60 μm3 - 1 TeraVoxel

JHU DNS Turbulence time

varying simulation -

2048 time steps at 10243 –

2 TeraVoxels

Example of simulation data

Example of acquired data

• Goal: interactively explore
potentially unlimited
volumetric datasets on
single PCs

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

In this talk: scalar volumes

5

JHU Turbulence 1024^3 x 2048 frames float (8 TB) on Intel i7 16GB RAM with NVIDIA GeForce GTX 980

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Massive volumetric data visualization

• To explore massive 3D volumes we need to
transform them at interactive into a synthetic
image that can be displayed on the screen

• Two main families of algorithms…

– Raycasting algorithms

– Rasterization-based algorithms (slicing)

I/O

Storage Screen
Viewing parameters

TF + Projection + Visibility + Shading

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Massive volumetric data visualization

• To explore massive 3D volumes we need to
transform them at interactive into a synthetic
image that can be displayed on the screen

• … large pressure on memory/bandwidth/comp.

– … basically traverse most voxels to produce images…

– … sample each voxel multiple times (filtering, gradients…)

I/O

Storage Screen

10-100 Hz
O(N=1M-100M) pixels

O(K=unbounded) bytes
(voxels, frames)

Limited resources
(network/disk/RAM/CPU/PCIe/GPU/…)

Viewing parameters

TF + Projection + Visibility + Shading

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Massive volumetric data visualization

• To explore massive 3D volumes we need to
transform them at interactive into a synthetic
image that can be displayed on the screen

• … large pressure on memory/bandwidth/comp.

– … basically traverse most voxels to produce images…

– … sample each voxel multiple times (filtering, gradients…)

I/O

Storage Screen

10-100 Hz
O(N=1M-100M) pixels

O(K=unbounded) bytes
(voxels, frames)

Limited resources
(network/disk/RAM/CPU/PCIe/GPU/…)

Viewing parameters

TF + Projection + Visibility + Shading

SCALABILITY PROBLEM!

Need for specific methods to

handle «big data»!

TODAY:
10 Gvoxel…1 TVoxel

TODAY (GTX980): VRAM: 4GB;
Bandwidth: 200GB/s VRAM, 5GB/s
PC->GPU, 500MB/s SSD->PC

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Massive volumetric data visualization

• To explore massive 3D volumes we need to
transform them at interactive into a synthetic
image that can be displayed on the screen

• … large pressure on memory/bandwidth/comp.

– … basically traverse most voxels to produce images…

– … sample each voxel multiple times (filtering, gradients…)

I/O

Storage Screen

10-100 Hz
O(N=1M-100M) pixels

O(K=unbounded) bytes
(voxels, frames)

Limited resources
(network/disk/RAM/CPU/PCIe/GPU/…)

Viewing parameters

TF + Projection + Visibility + Shading

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Scalability

• Traditional HPC, parallel rendering definitions

– Strong scaling (more nodes are faster for same data)

– Weak scaling (more nodes allow larger data)

• Our interest/definition: output sensitivity

– Running time/storage proportional to size of output
instead of input

• Computational effort scales with visible data and screen
resolution

• Working set independent of original data size

10

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Massive volumetric data visualization

• Models of unbounded complexity on limited
computers

– Need for output-sensitive techniques (O(N), not O(K))

• We assume less data on screen (N) than in model (K)

– Need for memory-efficient techniques (low bandwidth and
memory pressure, high caching)

– Need for parallel techniques (high CPU/GPU core usage)

I/O

Storage Screen

10-100 Hz
O(N=1M-100M) pixels

O(K=unbounded) bytes
(voxels, frames)

Limited resources
(network/disk/RAM/CPU/PCIe/GPU/…)

Viewing parameters

TF + Projection + Visibility + ShadingProjection + Visibility + Shading

Small
Working Set

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Solution strategies

• Adaptive working set determination and
rendering

– Multiresolution structures to partitition data and precompute
prefiltered versions

– Quick culling out of unneeded data to determine working set

– Streaming/adaptive loading of working set data

– Single pass vs. multipass rendering on working set

• Compression and compression-domain
rendering

– Reduce storage and bandwith

– Compression-domain computations & deferred filtering

12

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Ray-guided streaming with
multiresolution GPU raycasting

Adaptive working set determination and
rendering

13

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Order dependentOrder independent

Accumulation

Empty space skipping

Early ray termination

Pixel

14

Volume rendering problem

Limit computation &
data access

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Hierarchical Bricking

• Prefiltering to represent
data at multiple
resolutions

– Essential for adaptivity

• Pyramids of uniform grids

– Mipmaps, flat multires blocking

• Tree structures

– Octrees, N3 trees, kd-trees

16

wikipedia.org

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Out-of-core GPU Volume Rendering
(Traditional)
• Traditional out-of-core GPU

volume rendering with large
bricks (e.g., 2563)

– CPU working set determination
prior to rendering

• global attribute-based culling (view-
independent)

• view frustum/occlusion culling (view-
dependent)

– One rendering pass per brick

• Render back-to-front or front-to-back
+ frame buffer accumulation

– Sorting on CPU, can work in a
streaming manner

Cull & Sort

Frame

Buffer AccumulateAccumulateAccumulateAccumulate

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Out-of-core GPU Volume Rendering
(Traditional)
• Low culling efficiency and low

flexibility

– Low granularity leads to inefficient
bandwidth/memory usage

– Hard to apply to indirect/curved rays
(e.g., refraction, shadows, …)

– need for frame buffer synchronization
and auxiliary structures for efficient
occlusion culling

Cull & Sort

Frame

Buffer AccumulateAccumulateAccumulateAccumulate

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

AccumulateAccumulateAccumulateAccumulate

Out-of-core GPU Volume Rendering
(Modern)
• Modern out-of-core GPU

volume rendering use small
bricks (e.g., 163)

– Better culling efficiency, tighter
working set, but more bricks to
cull and render…

– One pass per brick infeasible!

– Working set determination infeasible
on CPU

Cull & Sort

Frame

Buffer AccumulateAccumulateAccumulateAccumulateAccumulateAccumulateAccumulateAccumulate

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

AccumulateAccumulateAccumulateAccumulate

Out-of-core GPU Volume Rendering
(Modern)
• Modern out-of-core GPU

volume rendering use small
bricks (e.g., 163)

– Working set determination on
GPU

– One-pass rendering on working
set of bricks

– Task-dependent brick size (small
for rendering, large for disk/network
I/O)

• See Fogal et al., LDAV 2013 for
benchmarks & analysis

• Need for GPU algorithms +
data structures!

Cull & Sort

Frame

Buffer AccumulateAccumulateAccumulateAccumulateAccumulateAccumulateAccumulateAccumulate

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Working Set Determination
(Modern)
• Rays determine working set directly!

– Each ray writes out list of bricks it requires (intersects) front-
to-back and the resolution it needs

– Implicit view frustum culling (no extra step required)

– Implicit occlusion culling (no extra steps or occlusion buffers)

– Implicit LOD selection (no extra steps required)

21

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Out-of-core GPU Volume Rendering
(Modern)
• GPU code must traversee a

spatial/multires structure
covering current working set

– E.g., octree

• Brick data is shared in a
common texture atlas

– Cache maintained using LRU/MRU
policy

• Spatial structure is
maintained by the CPU and
traversed by the GPU

– Octree performs address translation
from virtual MipMap to brick pool

22

Virtual MipMap Brick Pool

©Leo Ortolani, Rat-Man

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Ray-guided Architecture

• Early ray-guided streaming methods (Gobbetti
2008, Iglesias 2010):

– Multi-resolution out-of-core representation based on an
octree of volume bricks

– Adaptive CPU loading of the data from local/remote
repository cooperates with separate render threads fully
executed in the GPU

– Stackless traversal of an adaptive working set

– Exploitation of the visibility feedback

• Many follow-ups by us and others

– E.g., Crassin 2009, ..., Gobbetti 2012, ..., Hadwiger 2014

23

E. Gobbetti, F. Marton, and J. A. Iglesias Guitián. A single-pass GPU ray casting framework for interactive
out-of-core rendering of massive volumetric datasets. The Visual Computer, 24, 2008.
J. A. Iglesias Guitián, E. Gobbetti and F. Marton View-dependent exploration of massive volumetric models
on large-scale light field displays. The Visual Computer, 26, 2010.

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Ray-guided Architecture

24

Year Paper Data size Comments

2002 Guthe et al. 512 x 512 x 999 (500 MB)

2,048 x 1,216 x 1,877 (4.4 GB)

multi-pass, wavelet compression,

streaming from disk

2003 Krüger & Westermann 256 x 256 x 256 (32 MB) single-pass ray-casting

2005 Hadwiger et al. 576 x 352 x 1,536 (594 MB) single-pass ray-casting (bricked)

2006 Ljung 512 x 512 x 628 (314 MB)

512 x 512 x 3396 (1.7 GB)

single-pass ray-casting,

multi-resolution

2008 Gobbetti et al. 2,048 x 1,024 x 1,080 (4.2 GB) ‘ray-guided’ ray-casting with

occlusion queries

2009 Crassin et al. 8,192 x 8,192 x 8,192 (512 GB) ray-guided ray-casting

2010 Guitian et al. 4,096 x 4,096 x 4,096 (128 GB) ray-guided ray-casting

2011 Engel et al. 8,192 x 8,192 x 16,384 (1 TB) ray-guided ray-casting

2012 Hadwiger et al. 18,000 x 18,000 x 304 (92 GB)

21,494 x 25,790 x 1,850 (955 GB)

ray-guided ray-casting

visualization-driven system

2013 Fogal et al. 8,192 x 8,192 x 8,192 (512 GB) ray-guided ray-casting

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

volume

render

adaptive loader

storage

preprocessing

octree node

database

visibility

feedback

has current working set
enough accuracy?

yes

octree refinement

prepare to render

no

GPUCPU

[creation and maintainance] [rendering]

o
ff

li
n

e

Ray-guided Architecture

25

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Ray-guided Architecture

• Three GPU structures

– Index tree: octree
structure of current
working set

• Octree with ropes in
Gobbetti 2008, octree
with pointers in Crassin
2009, Gobbetti 2010

– Brick cache: data for
current working set

• Stored in texture cache,
LRU policy

– Feedback buffer

• One entry per node in
index tree

2626

Architecture overview

Neighbour pointer navigation

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

• The adaptive loader maintains in-core a view-and-
transfer function dependent cut of the out-of-core
octree structure
– Uses it to update the GPU cache and Spatial Index.

– Uses CUDA scatter write capability on a 8bit CUDA-array or
modern OpenGL extensions
(GL_ARB_shader_storage_buffer_object, …)

• Basic principles:
– Update during rendering the visibility status of the nodes

– Refine nodes marked as visible during the previous frame and
considered inaccurate and non-empty according to the current
transfer function

– Pull-up visibillity data to inner nodes by recursive
recombination and overly refined nodes

• The cost amortized over full ray-casting is negligible

Ray-guided Streaming Algorithm

27

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Ray-guided Architecture

28

Interactive exploration of a 16bit 2GB CT volume
on a consumer NVidia 8800 GTS graphics board
with 640MB (Gobbetti et al., 2008)

• Scalable output-sensitive
interactive technique
– Supports real-time out-of-

core rendering of massive
volumes on standard PC

– Single-pass rendering with
visibility culling applicable to
a variety of situations
• Transparency, refraction

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Ray-guided Architecture

29

Interactive exploration of a 8GVoxel Dataset on 35MPixel Light Field Display (Iglesias
Guitian et al., TVC, 2010)

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

COMPRESSION-DOMAIN
RENDERING

Optimizing memory & bandwidth

30

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Optimizing memory & bandwidth

• Long data transfer times and GPU memory size
limit maximum update rate and dataset size

• Must combine compression with LODs and
adaptive loading
– For maximum benefits, data must travel in compressed

format through all the pipe-line

• We can afford “slow” offline compression and
precomputation, but we require fast real-time
data decoding, interpolation and shading
– Spatially independent random-access to data

• => New architecture, and new compressed
data formats!

31

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Architecture

32

• Typical architecture for massive datasets

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Architecture

33

• Decompression on CPU before rendering

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Decompression on CPU before Rendering

• Decompression (generally lossless) of data
streams

– E.g. Wavelet-based time-space partitioning [Shen et al.
2006]

• Reduces the storage needs

• Support faster and remote access to data

34

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Decompression on CPU before Rendering

• Decompression (generally lossless) of data
streams

– E.g. Wavelet-based time-space partitioning [Shen et al.
2006]

• Large memory resources needed

• Inefficient use of the GPU memory bandwidth

• CPU decompression is generally not sufficient

for time-varying datasets
• Common in hybrid architectures [Nagayasu’08, Mensmann’10]

35

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Architecture

36

• Full decompression on GPU before rendering

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Full Decompression on GPU before
Rendering

• Speed-up decompression by using the GPU

– Full working set decompression

• [Wetekam’05, Mensmann’10, Suter’11]

• Works for time-varying data

– … but each single time step should fit in the GPU memory
and has to be decoded fast enough

• Limit the maximum working set size …

– … to its size in uncompressed format

37

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Architecture

38

• Transient local decompression during rendering

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Decompression during Rendering

• Transient and local decoding occurs on-demand
during the rendering process

– The entire dataset is never fully decompressed

– Data travels in compressed format from the CPU to the GPU

• Make the most of the available memory

bandwidth

• On-demand, fast and spatially independent
decompression on the GPU:

– Pure random-access

– Local and transient decoding

39

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Pure random-access

• Data decompression is performed each time the
renderer needs to access a single voxel

– Hardware-supported formats

• Fixed-rate block-coding methods

– E.g. OpenGL VTC [Craighead’04], ASTC [Nystad’12]

• GPU implementations of per-block scalar quantization

– [Yela’08, Iglesias’10]

– Fast, full support for filtering

– Limited choice, not scalable, low compression
performance

40

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Pure random-access

• Data decompression is performed each time the
renderer needs to access a single voxel

– Per-voxel decoding

• GPU implementations of VQ and HVQ

– [Schneider’03, Fout’07]

• Costly in performance

• Rarely implement multisampling or HQ shading

– For this they rely on deferred filtering architectures

– Slow, no support for filtering (typically single-sample
nearest neighbor)

– Limited choice, not scalable, low compression
performance

41

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Local and transient decoding

• Partial working set decompression

• Interleaving of decoding and rendering

• Exploit better the GPU memory resources

• More choice of compression methods

42

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Deferred filtering

• Deferred filtering solutions [Fout’05, Wang’10]

– Decompress groups of slices into textures, which can be
reused (multisampling, filtering) during rendering for
gradient and shading computations

– Exploit spatial coherence and supports high-quality shading

– Proposed as a single resolution approach

43

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Deferred filtering (single resolution)

44

Rendering from a Custom Memory Format

Using Deferred Filtering [Kniss’05]

Gradient computation using

central differences [Fout’05]

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Deferred filtering (multiresolution)

• Extended deferred filtering to work with
multiresolution data structures [Gobbetti’12]

• Frame-buffer combination of partial portions of an octree

45

Deferred Filtering of an octree structure in GPU [Gobbetti’12]

45

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Multiresolution deferred filtering

47

Rayleigh-Taylor 3072^3 16bit (54 GB) on Intel i7 16GB RAM with NVIDIA GeForce GTX 980

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Blocking artefacts in compressed
rendering
• High compression

ratios may produce
artifacts between
adjacent blocks

– Blocks are individually
compressed and do not
match at boundaries

– Small differences create
gradients

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Blocking artefacts in compressed
rendering
• High compression

ratios may produce
artifacts between
adjacent blocks

– Blocks are individually
compressed and do not
match at boundaries

– Small differences create
gradients

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

• Filter decompressed data before rendering

– Smooth transition across boundaries

– Good balance artifact removal / feature preservation

– Low impact on performance

Deblocking

F. Marton, J. A. Iglesias Guitián, Jose Diaz, and E. Gobbetti.
Real-time deblocked GPU rendering of compressed volumes.
Proc. VMV. Pages 167-174, October 2014.

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Deblocking results

Johns Hopkins Turbulence
simulation (512 time steps)

512 x 512 x 512 32 bit

256 GB uncompressed

K-SVD [Gobbetti et al. 10]

Compressed to 1.6 GB

(0.2 bps)

(block size = 8, K = 4, D = 1024)

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Architecture Wrap-up

• Local and transient reconstruction is a key
factor in compression domain volume rendering

– Requires design at different levels

• Compact data model

• Rendering architectures

• Pure voxel-based random-access and
online/transient decoders avoid the full
working set decompression

• Efficient decompression is specially important
in lighter clients

– e.g. mobile, constrained network speeds

52

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

COMPACT REPRESENTATIONS

Optimizing memory & bandwidth

53

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Compact representations

• The presented architecture supports many
brick-based compression methods with fast
GPU decompression

• Off-line: Achieve high compression ratio with
high quality

• On-line: Reconstruct in real-time

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Compact representations

• Decompose the volume into a multiresolution
octree structure, where each octree node
(brick) is decomposed in smaller blocks. Each
block is compressed

• Block is 3D signal that must be
compressed/decompressed

Single octree node containing
overlapping information

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Representing signals

• Signals can be represented as linear
combinations of something we already know
(the basis)

56

Bases Coefficients Signal

Drawing courtesy of
Manny Ko

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

The sparse signal model

• Compression achieved by selection, truncation
and quantization of coefficients

57

Drawing courtesy of
Manny Ko

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

The sparse signal model

• Compression achieved by truncation and
quantization of coefficients

58

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Predefined Orthonormal Bases

• The most classic choice is to use fixed and
orthonormal bases to define the dictionary D
(K=N ,)

59

Common

ONBs

Drawing courtesy of
Manny Ko

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Predefined Orthonormal Bases

• Predefined orthonormal bases have many
advantages…

– The dictionary is implicit (analytic formulation)

– Mathematical properties are well studied

– Often fast algorithms for projection and reconstruction

• Lots of applications in volume rendering

– discrete Fourier transform (1990;1993)

– discrete Hartley transform (1993)

– discrete cosine transform (1995)

– discrete wavelet transform (1993)

– laplacian pyramid/transform (1995;2003)

– Burrows-Wheeler transform (2007)

60

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Predefined Orthonormal Bases

• Predefined orthonormal bases have many
limitations…

– Optimal only for specific synthetic signals

– Limited expressiveness, all signals behave the same

– Real-world signal often require lots of coefficients

• Truncation leads to aliasing

• Interest is now shifting towards learned bases

– Data-dependent dictionary

– Overcomplete basis (K>N), not orthonormal

• There is more than one way to represent a signal

• By relaxing ONB rules we can better represent signals using less
coefficients

61

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Learned Bases

• Early work based on vector quantization

– Special case where sparsity is forced to one

– Many applications in volume rendering (1993;2003)

– Achievable quality dependent on dictionary size

• Recent work focused on more scalable
solutions

– Karhunen-Loeve transform + VQ (2007)

– Tensor approximation (2010; 2011) (UZH+CRS4)

– Sparse coding (2012; 2014) (CRS4)

62

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Learned Bases

• Early work based on vector quantization

– Special case where sparsity is forced to one

– Many applications in volume rendering (1993;2003)

– Achievable quality dependent on dictionary size

• Recent work focused on more scalable
solutions

– Karhunen-Loeve transform + VQ (2007)

– Tensor approximation (2010; 2011) (UZH+CRS4)

– Sparse coding (2012; 2014) (CRS4)

63

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Sparse coding

• Explicit representation of dictionary D, which is
learned from the dataset prior to encoding

64

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Sparse coding of volume blocks

• Two phases

– Learn dictionary D from data

– Encode data using computed D

• Compression is achieved by storing indices and magnitudes

• Generalization of vector quantization

– Combine vectors instead of choosing single ones

– Overcomes limitations due to dictionary sizes

• Generalization of predefined bases

– Dictionary is an overcomplete basis

– Sparse projection

65

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Finding an optimal dictionary

• We employ a variation of K-SVD algorithm for
dictionary training

– Algorithm for designing overcomplete dictionaries for sparse
representations [Aharon et al. 06]

– Alternates sparse coding with fixed dictionary and dictionary
update steps

• But running K-SVD calculations directly on
massive volumes would be unfeasible,
therefore we reduce training set size

– We applied the concept of coreset [Agarwal et al. 05] to
smartly subsample and reweight the original training set
[Feldman & Langberg 11, Feigin et al. 11]

– We designed a weighted version of K-SVD...

66

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

• K-SVD can be seen as a K-Means generalization

• Basic steps:
– Sparse coding of signals in X, producing Γ

– Update dictionary atoms given the sparse representations
• Optimize one atom at a time, keeping the rest fixed

• The size of E is proportional to the number of training signals

– As in [Rubinstein et al. 08] we replace the SVD computation
with a simpler numerical approximation

Dictionary learning (K-SVD)

67

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Coreset construction

• Calculations on massive input volumes are still
unfeasible, but we can …

– … reduce the amount of data used for training

– … use importance sampling

• We associate an importance to each of the
original blocks, being the standard deviation
of the entries in

– Picking C elements with probability proportional to

– Most important blocks should end up in our coreset

• See our 2012 paper for methods for coreset
building and training using few streaming
passes

68

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Coreset construction &
Weighted K-SVD
• Non-uniform sampling introduces a severe bias,

we thus reweight selected samples

– Scale each selected block by a weight where
is the associated picking probability

• Applying K-SVD to the non-uniformly scaled
training set will converge to a dictionary
optimal for the original problem

69

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Coreset construction &
Weighted K-SVD
• Coreset scalability

70

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Sparse Coding Results

• PSNR vs. Bits Per Sample

71

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Sparse Coding vs HVQ vs Tensor

• Comparison of state-of-the-art GPU-based
decompression methods

SPARSE
CODING

HVQ

TA

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Compression Results

73

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Compressed DVR Example

74

Chameleon: 1024^3@16bit (2.1GB); Supernova: 432^3×60timesteps@float (18GB)

Compression-domain Rendering from Sparse-Coded Voxel Blocks (EUROVIS2012)

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Current work: dynamic data

75

JHU Turbulence 1024^3 x 2048 frames float (8 TB) on Intel i7 16GB RAM with NVIDIA GeForce GTX 980

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

TIME FOR A CONCLUSION,
RIGHT?

A bit overtime?

76

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Summary

• Provided characterization of the basic
components common to modern compressed
DVR systems

– Compact data models and representation

– Compression, encoding, decoding and rendering

77

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Ongoing Large Data Problem

• Generation and acquisition of volume data
continues to outperform HW performance
capacity

– In particular CPU-GPU memory throughput

• Trend to move all steps to the GPU

– Working set selection, decompression & adaptive rendering

– Aim is just-in-time decompression during rendering to keep
data compressed on the GPU

• Remains an active research area in computer
graphics and visualization

– Algorithms, data structures & implementation

– “Massive volume rendering is one percent inspiration,
ninety-nine percent perspiration” (sort of…)

78

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Limitations & Future Work
(Food for PhDs?)
• Current methods are not fully output-sensitive

– Maximum complexity still depends on transparency

– Budget-based methods exist but are not fully integrated in
ray-guided pipelines

79

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Limitations & Future Work
(Food for PhDs?)
• Current GPU accelerated methods have

limitations in terms of compression rate vs.
quality vs. flexibility

– Few of the methods can efficiently cover the full spectrum
from extreme compression to (near-)lossless compression

– Most of current implementations do not adequately support
variable bit-rate encoding or error control

– Blocking artifacts are not completely solved yet

– Post-process deblocking a bit slow and not flexible

80

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Limitations & Future Work
(Food for PhDs?)
• Not all errors are equal

– Errors are measured in data space, typically using Euclidean
norms

– Should work in some perceptual space & define other norms
to evaluate error

– How to take into account transfer function space at
preprocessing time while staying flexible?

81

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Limitations & Future Work
(Food for PhDs?)
• Dynamic datasets still pose some unsolved

challenges…

– Ray-guided streaming & adaptive loading introduces
unwanted image variation over time

– Disturbing for time-varying datasets…

• … and much more…

82

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Some documentation

• Relevant papers
– F. Marton, J. A. Iglesias Guitián, J. Diaz, and E. Gobbetti. Real-time deblocked GPU rendering of

compressed volumes. VMV: 167-174, October 2014.

– E. Gobbetti, J. A. Iglesias Guitián, and F. Marton. COVRA: A compression-domain output-
sensitive volume rendering architecture based on a sparse representation of voxel blocks.
CGF 31(3-4): 1315-1324, 2012.

– S. K. Suter, J. A. Iglesias Guitián, F. Marton, M. Agus, A. Elsener, C. Zollikofer, M. Gopi, E. Gobbetti,
and R. Pajarola. Interactive Multiscale Tensor Reconstruction for Multiresolution Volume
Visualization. IEEE TVCG, 2011.

– M. Agus, E. Gobbetti, J. A. Iglesias Guitián, and F. Marton. Split-Voxel: A Simple Discontinuity-
Preserving Voxel Representation for Volume Rendering. Volume Graphics: 21-28, 2010.

– J. A. Iglesias Guitián, E. Gobbetti, and F. Marton. View-dependent Exploration of Massive
Volumetric Models on Large Scale Light Field Displays. The Visual Computer, 26(6-8): 1037-
1047, 2010.

– E. Gobbetti, F. Marton, and J. A. Iglesias Guitián. A single-pass GPU ray casting framework for
interactive out-of-core rendering of massive volumetric datasets. The Visual Computer, 24(7-
9): 797-806, 2008.

• Recent surveys
– M. Balsa Rodriguez, E. Gobbetti, J. A. Iglesias Guitián, M. Makhinya, F. Marton, R. Pajarola, and S.

Suter. State-of-the-art in Compressed GPU-Based Direct Volume Rendering. CGF, 33(6): 77-
100, September 2014.

– J. Beyer, M. Hadwiger, and H. Pfister, State-of-the-Art in GPU-Based Large-Scale Volume
Visualization. Computer Graphics Forum. 2015. To appear.

83

www.crs4.it/vic/

84

Contacts:

gobbetti@crs4.it

http://www.crs4.it/vic

Work partially supported by:

DIVA - Data Intensive Visualization and

Analysis

EU ITN FP7/2007-2013/

REA grant agreement 290227

mailto:gobbetti@crs4.it
http://www.crs4.it/vic

E. Gobbetti, CRS4 Visual Computing Overview, October 2015

85

©Leo Ortolani, Rat-Man

