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Big Data

• Explosion of data in all areas of 
science, engineering, health and 
business applications, driven by 
improvements in hardware and 
information processing technology

– Acquisition: 3D imaging, remote sensing, 
range scanners, massive picture collections, 
ubiquitous sensing devices, …

– Computing: modeling, simulations…

• Need for novel tools, techniques, and 
expertise!

• Our focus is 3D data

– Wide and deep impact on a variety of 
domains
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64 x 64 x 64

[Sabella 1988]

256 x 256 x 256 

[Krüger 2003]

21494 x 25790 x 1850 

[Hadwiger 2012]

1988 2012200620001994

1TVox

In this talk: scalar volumes
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• Goal: interactively explore 
potentially unlimited 
volumetric datasets on 
single PCs 

2048x1024x1080 

[Gobbetti 2008]
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In this talk: scalar volumes
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Connectome (Bobby Kasthuri, Harvard): 

~60 μm3 - 1 TeraVoxel

JHU DNS Turbulence time 

varying simulation -

2048 time steps at 10243 –

2 TeraVoxels

Example of simulation data

Example of acquired data

• Goal: interactively explore 
potentially unlimited 
volumetric datasets on 
single PCs 
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In this talk: scalar volumes
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JHU Turbulence 1024^3 x 2048 frames float (8 TB) on Intel i7 16GB RAM with NVIDIA GeForce GTX 980 
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Massive volumetric data visualization

• To explore massive 3D volumes we need to 
transform them at interactive into a synthetic 
image that can be displayed on the screen

• Two main families of algorithms…

– Raycasting algorithms

– Rasterization-based algorithms (slicing)

I/O

Storage Screen
Viewing parameters

TF + Projection + Visibility + Shading
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Massive volumetric data visualization

• To explore massive 3D volumes we need to 
transform them at interactive into a synthetic 
image that can be displayed on the screen

• … large pressure on memory/bandwidth/comp.

– … basically traverse most voxels to produce images…

– … sample each voxel multiple times (filtering, gradients…)

I/O

Storage Screen

10-100 Hz
O(N=1M-100M) pixels

O(K=unbounded) bytes 
(voxels, frames)

Limited resources
(network/disk/RAM/CPU/PCIe/GPU/…)

Viewing parameters

TF + Projection + Visibility + Shading
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Massive volumetric data visualization

• To explore massive 3D volumes we need to 
transform them at interactive into a synthetic 
image that can be displayed on the screen

• … large pressure on memory/bandwidth/comp.

– … basically traverse most voxels to produce images…

– … sample each voxel multiple times (filtering, gradients…)

I/O

Storage Screen

10-100 Hz
O(N=1M-100M) pixels

O(K=unbounded) bytes 
(voxels, frames)
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Viewing parameters

TF + Projection + Visibility + Shading

SCALABILITY PROBLEM!

Need for specific methods to 

handle «big data»!

TODAY: 
10 Gvoxel…1 TVoxel

TODAY (GTX980):  VRAM: 4GB; 
Bandwidth: 200GB/s VRAM, 5GB/s 
PC->GPU, 500MB/s SSD->PC 
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Scalability

• Traditional HPC, parallel rendering definitions

– Strong scaling (more nodes are faster for same data)

– Weak scaling (more nodes allow larger data)

• Our interest/definition: output sensitivity

– Running time/storage proportional to size of output 
instead of input

• Computational effort scales with visible data and screen 
resolution

• Working set independent of original data size

10
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Massive volumetric data visualization

• Models of unbounded complexity on limited 
computers

– Need for output-sensitive techniques (O(N), not O(K))

• We assume less data on screen (N) than in model (K )

– Need for memory-efficient techniques (low bandwidth and 
memory pressure, high caching)

– Need for parallel techniques (high CPU/GPU core usage)

I/O

Storage Screen

10-100 Hz
O(N=1M-100M) pixels

O(K=unbounded) bytes 
(voxels, frames)

Limited resources
(network/disk/RAM/CPU/PCIe/GPU/…)

Viewing parameters

TF + Projection + Visibility + ShadingProjection + Visibility + Shading

Small
Working Set
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Solution strategies

• Adaptive working set determination and 
rendering

– Multiresolution structures to partitition data and precompute
prefiltered versions

– Quick culling out of unneeded data to determine working set

– Streaming/adaptive loading of working set data

– Single pass vs. multipass rendering on working set

• Compression and compression-domain 
rendering

– Reduce storage and bandwith

– Compression-domain computations & deferred filtering

12
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Ray-guided streaming with 
multiresolution GPU raycasting

Adaptive working set determination and 
rendering

13
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Order dependentOrder independent

Accumulation

Empty space skipping

Early ray termination

Pixel

14

Volume rendering problem

Limit computation & 
data access
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Hierarchical Bricking

• Prefiltering to represent 
data at multiple 
resolutions

– Essential for adaptivity

• Pyramids of uniform grids

– Mipmaps, flat multires blocking

• Tree structures

– Octrees, N3 trees, kd-trees

16

wikipedia.org
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Out-of-core GPU Volume Rendering 
(Traditional)
• Traditional out-of-core GPU 

volume rendering with large 
bricks (e.g., 2563) 

– CPU working set determination 
prior to rendering 

• global attribute-based culling (view-
independent)

• view frustum/occlusion culling (view-
dependent)

– One rendering pass per brick

• Render back-to-front or front-to-back 
+ frame buffer accumulation

– Sorting on CPU, can work in a 
streaming manner

Cull & Sort

Frame

Buffer AccumulateAccumulateAccumulateAccumulate
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Out-of-core GPU Volume Rendering 
(Traditional)
• Low culling efficiency and low 

flexibility

– Low granularity leads to inefficient 
bandwidth/memory usage

– Hard to apply to indirect/curved rays 
(e.g., refraction, shadows, …)

– need for frame buffer synchronization 
and auxiliary structures for efficient 
occlusion culling

Cull & Sort

Frame

Buffer AccumulateAccumulateAccumulateAccumulate
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AccumulateAccumulateAccumulateAccumulate

Out-of-core GPU Volume Rendering 
(Modern)
• Modern out-of-core GPU 

volume rendering use small 
bricks (e.g., 163)

– Better culling efficiency, tighter 
working set, but more bricks to 
cull and render…

– One pass per brick infeasible!

– Working set determination infeasible 
on CPU

Cull & Sort

Frame

Buffer AccumulateAccumulateAccumulateAccumulateAccumulateAccumulateAccumulateAccumulate
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AccumulateAccumulateAccumulateAccumulate

Out-of-core GPU Volume Rendering 
(Modern)
• Modern out-of-core GPU 

volume rendering use small 
bricks (e.g., 163)

– Working set determination on 
GPU

– One-pass rendering on working 
set of bricks

– Task-dependent brick size (small 
for rendering, large for disk/network 
I/O)

• See Fogal et al., LDAV 2013 for 
benchmarks & analysis

• Need for GPU algorithms + 
data structures!

Cull & Sort

Frame

Buffer AccumulateAccumulateAccumulateAccumulateAccumulateAccumulateAccumulateAccumulate
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Working Set Determination 
(Modern)
• Rays determine working set directly!

– Each ray writes out list of bricks it requires (intersects) front-
to-back and the resolution it needs

– Implicit view frustum culling (no extra step required)

– Implicit occlusion culling (no extra steps or occlusion buffers)

– Implicit LOD selection (no extra steps required)

21
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Out-of-core GPU Volume Rendering 
(Modern)
• GPU code must traversee a 

spatial/multires structure 
covering current working set

– E.g., octree

• Brick data is shared in a 
common texture atlas

– Cache maintained using LRU/MRU 
policy

• Spatial structure is 
maintained by the CPU and 
traversed by the GPU

– Octree performs address translation 
from virtual MipMap to brick pool

22

Virtual MipMap Brick Pool

©Leo Ortolani, Rat-Man
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Ray-guided Architecture

• Early ray-guided streaming methods (Gobbetti 
2008, Iglesias 2010):

– Multi-resolution out-of-core representation based on an 
octree of volume bricks

– Adaptive CPU loading of the data from local/remote 
repository cooperates with separate render threads fully 
executed in the GPU

– Stackless traversal of an adaptive working set

– Exploitation of the visibility feedback

• Many follow-ups by us and others

– E.g., Crassin 2009, ..., Gobbetti 2012, ..., Hadwiger 2014

23

E. Gobbetti, F. Marton, and J. A. Iglesias Guitián. A single-pass GPU ray casting framework for interactive 
out-of-core rendering of massive volumetric datasets. The Visual Computer, 24, 2008.
J. A. Iglesias Guitián, E. Gobbetti and F. Marton View-dependent exploration of massive volumetric models 
on large-scale light field displays. The Visual Computer, 26, 2010.
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Ray-guided Architecture

24

Year Paper Data size Comments

2002 Guthe et al. 512 x 512 x 999 (500 MB)

2,048 x 1,216 x 1,877 (4.4 GB)

multi-pass, wavelet compression,

streaming from disk

2003 Krüger & Westermann 256 x 256 x 256 (32 MB) single-pass ray-casting

2005 Hadwiger et al. 576 x 352 x 1,536 (594 MB) single-pass ray-casting (bricked)

2006 Ljung 512 x 512 x 628 (314 MB)

512 x 512 x 3396 (1.7 GB)

single-pass ray-casting,

multi-resolution

2008 Gobbetti et al. 2,048 x 1,024 x 1,080 (4.2 GB) ‘ray-guided’ ray-casting with

occlusion queries

2009 Crassin et al. 8,192 x 8,192 x 8,192 (512 GB) ray-guided ray-casting

2010 Guitian et al. 4,096 x 4,096 x 4,096 (128 GB) ray-guided ray-casting

2011 Engel et al. 8,192 x 8,192 x 16,384 (1 TB) ray-guided ray-casting

2012 Hadwiger et al. 18,000 x 18,000 x 304 (92 GB)

21,494 x 25,790 x 1,850 (955 GB)

ray-guided ray-casting

visualization-driven system

2013 Fogal et al. 8,192 x 8,192 x 8,192 (512 GB) ray-guided ray-casting
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volume

render

adaptive loader

storage

preprocessing

octree node

database

visibility

feedback

has current working set 
enough accuracy?

yes

octree refinement

prepare to render

no

GPUCPU

[ creation and maintainance ] [ rendering ]

o
ff

li
n

e

Ray-guided Architecture

25
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Ray-guided Architecture

• Three GPU structures

– Index tree: octree 
structure of current 
working set

• Octree with ropes in 
Gobbetti 2008, octree 
with pointers in Crassin
2009, Gobbetti 2010

– Brick cache: data for 
current working set

• Stored in texture cache, 
LRU policy

– Feedback buffer

• One entry per node in 
index tree

2626

Architecture overview

Neighbour pointer navigation
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• The adaptive  loader maintains in-core a view-and-
transfer function dependent cut of the out-of-core 
octree structure
– Uses it to update the GPU cache and Spatial Index.

– Uses CUDA scatter write capability on a 8bit CUDA-array or 
modern OpenGL extensions 
(GL_ARB_shader_storage_buffer_object, …)

• Basic principles:
– Update during rendering the visibility status of the nodes

– Refine nodes marked as visible during the previous frame and 
considered inaccurate and non-empty according to the current 
transfer function

– Pull-up visibillity data to inner nodes by recursive 
recombination and overly refined nodes

• The cost amortized over full ray-casting is negligible

Ray-guided Streaming Algorithm

27
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Ray-guided Architecture

28

Interactive exploration of a 16bit 2GB CT volume 
on a consumer NVidia 8800 GTS graphics board 
with 640MB (Gobbetti et al., 2008)

• Scalable output-sensitive 
interactive technique
– Supports real-time out-of-

core rendering of massive 
volumes on standard PC

– Single-pass rendering with 
visibility culling applicable to 
a variety of situations
• Transparency, refraction
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Ray-guided Architecture

29

Interactive exploration of a 8GVoxel Dataset on 35MPixel Light Field Display (Iglesias 
Guitian et al., TVC, 2010)
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COMPRESSION-DOMAIN 
RENDERING

Optimizing memory & bandwidth

30
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Optimizing memory & bandwidth

• Long data transfer times and GPU memory size 
limit maximum update rate and dataset size

• Must combine compression with LODs and 
adaptive loading
– For maximum benefits, data must travel in compressed 

format through all the pipe-line

• We can afford “slow” offline compression and 
precomputation, but we require fast real-time 
data decoding, interpolation and shading
– Spatially independent random-access to data

• => New architecture, and new compressed 
data formats!

31
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Architecture

32

• Typical architecture for massive datasets
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Architecture

33

• Decompression on CPU before rendering



E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Decompression on CPU before Rendering

• Decompression (generally lossless) of data 
streams

– E.g. Wavelet-based time-space partitioning [Shen et al. 
2006]

•  Reduces the storage needs

•  Support faster and remote access to data

34
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Decompression on CPU before Rendering

• Decompression (generally lossless) of data 
streams

– E.g. Wavelet-based time-space partitioning [Shen et al. 
2006]

•  Large memory resources needed

•  Inefficient use of the GPU memory bandwidth

•  CPU decompression is generally not sufficient 

for time-varying datasets
• Common in hybrid architectures [Nagayasu’08, Mensmann’10]

35
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Architecture

36

• Full decompression on GPU before rendering
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Full Decompression on GPU before 
Rendering

•  Speed-up decompression by using the GPU

– Full working set decompression 

• [Wetekam’05, Mensmann’10, Suter’11]

•  Works for time-varying data

– …  but each single time step should fit in the GPU memory 
and has to be decoded fast enough

•  Limit the maximum working set size …

– … to its size in uncompressed format

37
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Architecture

38

• Transient local decompression during rendering
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Decompression during Rendering

• Transient and local decoding occurs on-demand 
during the rendering process

– The entire dataset is never fully decompressed

– Data travels in compressed format from the CPU to the GPU

•  Make the most of the available memory 

bandwidth

• On-demand, fast and spatially independent 
decompression on the GPU:

– Pure random-access

– Local and transient decoding

39
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Pure random-access

• Data decompression is performed each time the 
renderer needs to access a single voxel

– Hardware-supported formats

• Fixed-rate block-coding methods

– E.g. OpenGL VTC [Craighead’04], ASTC [Nystad’12]

• GPU implementations of per-block scalar quantization

– [Yela’08, Iglesias’10]

– Fast, full support for filtering 

– Limited choice, not scalable, low compression 
performance

40



E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Pure random-access

• Data decompression is performed each time the 
renderer needs to access a single voxel

– Per-voxel decoding

• GPU implementations of VQ and HVQ 

– [Schneider’03, Fout’07]

•  Costly in performance

•  Rarely implement multisampling or HQ shading

– For this they rely on deferred filtering architectures

– Slow, no support for filtering (typically single-sample 
nearest neighbor)

– Limited choice, not scalable, low compression 
performance

41
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Local and transient decoding

• Partial working set decompression

• Interleaving of decoding and rendering

•  Exploit better the GPU memory resources

•  More choice of compression methods

42
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Deferred filtering

• Deferred filtering solutions [Fout’05, Wang’10]

– Decompress groups of slices into textures, which can be 
reused (multisampling, filtering) during rendering for 
gradient and shading computations

– Exploit spatial coherence and supports high-quality shading

– Proposed as a single resolution approach

43
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Deferred filtering (single resolution)

44

Rendering from a Custom Memory Format 

Using Deferred Filtering [Kniss’05]

Gradient computation using 

central differences  [Fout’05]
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Deferred filtering (multiresolution)

• Extended deferred filtering to work with 
multiresolution data structures [Gobbetti’12]

• Frame-buffer combination of partial portions of an octree

45

Deferred Filtering of an octree structure in GPU [Gobbetti’12]

45
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Multiresolution deferred filtering

47

Rayleigh-Taylor 3072^3 16bit (54 GB) on Intel i7 16GB RAM with NVIDIA GeForce GTX 980 
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Blocking artefacts in compressed 
rendering
• High compression 

ratios may produce 
artifacts between 
adjacent blocks

– Blocks are individually 
compressed and do not 
match at boundaries

– Small differences create 
gradients
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Blocking artefacts in compressed 
rendering
• High compression 

ratios may produce 
artifacts between 
adjacent blocks

– Blocks are individually 
compressed and do not 
match at boundaries

– Small differences create 
gradients
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• Filter decompressed data before rendering

– Smooth transition across boundaries

– Good balance artifact removal / feature preservation

– Low impact on performance 

Deblocking

F. Marton, J. A. Iglesias Guitián, Jose Diaz, and E. Gobbetti. 
Real-time deblocked GPU rendering of compressed volumes. 
Proc. VMV. Pages 167-174, October 2014. 
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Deblocking results

Johns Hopkins Turbulence 
simulation (512 time steps)

512 x 512 x 512 32 bit

256 GB uncompressed

K-SVD [Gobbetti et al. 10]

Compressed to 1.6 GB

(0.2 bps)

(block size = 8, K = 4, D = 1024)
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Architecture Wrap-up

• Local and transient reconstruction is a key 
factor in compression domain volume rendering

– Requires design at different levels

• Compact data model

• Rendering architectures

• Pure voxel-based random-access and 
online/transient decoders avoid the full 
working set decompression

• Efficient decompression is specially important 
in lighter clients

– e.g. mobile, constrained network speeds

52
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COMPACT REPRESENTATIONS

Optimizing memory & bandwidth

53
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Compact representations

• The presented architecture supports many 
brick-based compression methods with fast 
GPU decompression

• Off-line: Achieve high compression ratio with 
high quality

• On-line: Reconstruct in real-time
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Compact representations

• Decompose the volume into a multiresolution 
octree structure, where each octree node 
(brick) is decomposed in smaller blocks. Each 
block is compressed

• Block is 3D signal that must be 
compressed/decompressed

Single octree node containing 
overlapping information
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Representing signals

• Signals can be represented as linear 
combinations of something we already know 
(the basis)

56

Bases Coefficients Signal

Drawing courtesy of 
Manny Ko
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The sparse signal model

• Compression achieved by selection, truncation 
and quantization of coefficients

57

Drawing courtesy of 
Manny Ko
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The sparse signal model

• Compression achieved by truncation and 
quantization of coefficients

58



E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Predefined Orthonormal Bases

• The most classic choice is to use fixed and 
orthonormal bases to define the dictionary D 
(K=N ,                      )

59

Common

ONBs

Drawing courtesy of 
Manny Ko
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Predefined Orthonormal Bases

• Predefined orthonormal bases have many 
advantages…

– The dictionary is implicit (analytic formulation)

– Mathematical properties are well studied

– Often fast algorithms for projection and reconstruction

• Lots of applications in volume rendering

– discrete Fourier transform (1990;1993)

– discrete Hartley transform (1993)

– discrete cosine transform (1995)

– discrete wavelet transform (1993)

– laplacian pyramid/transform (1995;2003)

– Burrows-Wheeler transform (2007)

60
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Predefined Orthonormal Bases

• Predefined orthonormal bases have many 
limitations…

– Optimal only for specific synthetic signals

– Limited expressiveness, all signals behave the same

– Real-world signal often require lots of coefficients

• Truncation leads to aliasing

• Interest is now shifting towards learned bases

– Data-dependent dictionary

– Overcomplete basis (K>N), not orthonormal

• There is more than one way to represent a signal

• By relaxing ONB rules we can better represent signals using less
coefficients

61
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Learned Bases

• Early work based on vector quantization

– Special case where sparsity is forced to one

– Many applications in volume rendering (1993;2003)

– Achievable quality dependent on dictionary size

• Recent work focused on more scalable 
solutions

– Karhunen-Loeve transform + VQ (2007)

– Tensor approximation (2010; 2011) (UZH+CRS4)

– Sparse coding (2012; 2014) (CRS4)

62
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Learned Bases

• Early work based on vector quantization

– Special case where sparsity is forced to one

– Many applications in volume rendering (1993;2003)

– Achievable quality dependent on dictionary size

• Recent work focused on more scalable 
solutions

– Karhunen-Loeve transform + VQ (2007)

– Tensor approximation (2010; 2011) (UZH+CRS4)

– Sparse coding (2012; 2014) (CRS4)
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Sparse coding

• Explicit representation of dictionary D, which is 
learned from the dataset prior to encoding

64



E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Sparse coding of volume blocks

• Two phases

– Learn dictionary D from data

– Encode data using computed D

• Compression is achieved by storing indices and magnitudes

• Generalization of vector quantization

– Combine vectors instead of choosing single ones

– Overcomes limitations due to dictionary sizes

• Generalization of predefined bases

– Dictionary is an overcomplete basis

– Sparse projection

65
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Finding an optimal dictionary

• We employ a variation of K-SVD algorithm for 
dictionary training

– Algorithm for designing overcomplete dictionaries for sparse 
representations [Aharon et al. 06]

– Alternates sparse coding with fixed dictionary and dictionary 
update steps 

• But running K-SVD calculations directly on 
massive volumes would be unfeasible, 
therefore we reduce training set size

– We applied the concept of coreset [Agarwal et al. 05] to 
smartly subsample and reweight the original training set 
[Feldman & Langberg 11, Feigin et al. 11]

– We designed a weighted version of K-SVD... 

66
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• K-SVD can be seen as a K-Means generalization

• Basic steps:
– Sparse coding of signals in X, producing Γ

– Update dictionary atoms given the sparse representations
• Optimize one atom at a time, keeping the rest fixed

• The size of E is proportional to the number of training signals

– As in [Rubinstein et al. 08] we replace the SVD computation 
with a simpler numerical approximation

Dictionary learning (K-SVD)

67
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Coreset construction

• Calculations on massive input volumes are still 
unfeasible, but we can …

– … reduce the amount of data used for training

– … use importance sampling

• We associate an importance    to each of the 
original blocks, being    the standard deviation 
of the entries in 

– Picking C elements with probability proportional to

– Most important blocks should end up in our coreset

• See our 2012 paper for methods for coreset 
building and training using few streaming 
passes

68
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Coreset construction & 
Weighted K-SVD
• Non-uniform sampling introduces a severe bias, 

we thus reweight selected samples

– Scale each selected block     by a weight                 where    
is the associated picking probability

• Applying K-SVD to the non-uniformly scaled 
training set will converge to a dictionary 
optimal for the original problem

69
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Coreset construction & 
Weighted K-SVD
• Coreset scalability

70
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Sparse Coding Results

• PSNR vs. Bits Per Sample

71
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Sparse Coding vs HVQ vs Tensor 

• Comparison of state-of-the-art GPU-based 
decompression methods

SPARSE
CODING

HVQ

TA
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Compression Results
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Compressed DVR Example

74

Chameleon: 1024^3@16bit (2.1GB); Supernova: 432^3×60timesteps@float (18GB)

Compression-domain Rendering from Sparse-Coded Voxel Blocks (EUROVIS2012)
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Current work: dynamic data

75

JHU Turbulence 1024^3 x 2048 frames float (8 TB) on Intel i7 16GB RAM with NVIDIA GeForce GTX 980 
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TIME FOR A CONCLUSION, 
RIGHT?

A bit overtime?
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Summary

• Provided characterization of the basic 
components common to modern compressed 
DVR systems

– Compact data models and representation

– Compression, encoding, decoding and rendering
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Ongoing Large Data Problem

• Generation and acquisition of volume data 
continues to outperform HW performance 
capacity

– In particular CPU-GPU memory throughput

• Trend to move all steps to the GPU

– Working set selection, decompression & adaptive rendering

– Aim is just-in-time decompression during rendering to keep 
data compressed on the GPU

• Remains an active research area in computer 
graphics and visualization

– Algorithms, data structures & implementation

– “Massive volume rendering is one percent inspiration, 
ninety-nine percent perspiration” (sort of…)

78



E. Gobbetti, CRS4 Visual Computing Overview, October 2015

Limitations & Future Work
(Food for PhDs?)
• Current methods are not fully output-sensitive

– Maximum complexity still depends on transparency

– Budget-based methods exist but are not fully integrated in 
ray-guided pipelines
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Limitations & Future Work
(Food for PhDs?)
• Current GPU accelerated methods have 

limitations in terms of compression rate vs. 
quality vs. flexibility

– Few of the methods can efficiently cover the full spectrum 
from extreme compression to (near-)lossless compression

– Most of current implementations do not adequately support 
variable bit-rate encoding or error control

– Blocking artifacts are not completely solved yet

– Post-process deblocking a bit slow and not flexible
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Limitations & Future Work
(Food for PhDs?)
• Not all errors are equal

– Errors are measured in data space, typically using Euclidean 
norms

– Should work in some perceptual space & define other norms 
to evaluate error 

– How to take into account transfer function space at 
preprocessing time while staying flexible?
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Limitations & Future Work
(Food for PhDs?)
• Dynamic datasets still pose some unsolved 

challenges… 

– Ray-guided streaming & adaptive loading introduces 
unwanted image variation over time

– Disturbing for time-varying datasets…

• … and much more… 
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Some documentation

• Relevant papers
– F. Marton, J. A. Iglesias Guitián, J. Diaz, and E. Gobbetti. Real-time deblocked GPU rendering of 

compressed volumes. VMV: 167-174, October 2014.

– E. Gobbetti, J. A. Iglesias Guitián, and F. Marton. COVRA: A compression-domain output-
sensitive volume rendering architecture based on a sparse representation of voxel blocks. 
CGF 31(3-4): 1315-1324, 2012.

– S. K. Suter, J. A. Iglesias Guitián, F. Marton, M. Agus, A. Elsener, C. Zollikofer, M. Gopi, E. Gobbetti, 
and R. Pajarola. Interactive Multiscale Tensor Reconstruction for Multiresolution Volume 
Visualization. IEEE TVCG, 2011.

– M. Agus, E. Gobbetti, J. A. Iglesias Guitián, and F. Marton. Split-Voxel: A Simple Discontinuity-
Preserving Voxel Representation for Volume Rendering. Volume Graphics: 21-28, 2010.

– J. A. Iglesias Guitián, E. Gobbetti, and F. Marton. View-dependent Exploration of Massive 
Volumetric Models on Large Scale Light Field Displays. The Visual Computer, 26(6-8): 1037-
1047, 2010.

– E. Gobbetti, F. Marton, and J. A. Iglesias Guitián. A single-pass GPU ray casting framework for 
interactive out-of-core rendering of massive volumetric datasets. The Visual Computer, 24(7-
9): 797-806, 2008. 

• Recent surveys
– M. Balsa Rodriguez, E. Gobbetti, J. A. Iglesias Guitián, M. Makhinya, F. Marton, R. Pajarola, and S. 

Suter. State-of-the-art in Compressed GPU-Based Direct Volume Rendering. CGF, 33(6): 77-
100, September 2014.

– J. Beyer, M. Hadwiger, and H. Pfister, State-of-the-Art in GPU-Based Large-Scale Volume 
Visualization. Computer Graphics Forum. 2015. To appear.
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