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Abstract
This paper reports the results of the SHREC 2015 track on retrieval of non-rigid (textured) shapes from low quality
3D models. This track has been organized to test the ability of the algorithms recently proposed by researchers
for the retrieval of articulated and textured shapes to deal with real-world deformations and acquisition noise.
For this reason we acquired with low cost devices models of plush toys lying on different sides on a platform,
with articulated deformations and with different illumination conditions. We obtained in this way three novel and
challenging datasets that have been used to organize a contest where the proposed task was the retrieval of istances
of the same toy within acquired shapes collections, given a query model. The differences in datasets and tasks were
related to the fact that one dataset was built without applying texture to shapes, and the others had texture applied
to vertices with two different methods. We evaluated the retrieval results of the proposed techniques using standard
evaluation measures: Precision-Recall curve; E-Measure; Discounted Cumulative Gain; Nearest Neighbor, First-
Tier (Tier1) and Second-Tier (Tier2), Mean Average Precision. Robustness of methods against texture and shape
deformation has also been separately evaluated.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

This SHREC contest aims at combining different research
objective of past SHREC contests: testing of ability of
3D shape retrieval methods to deal with deformations
[LGB∗11], testing the ability of the methods to be applied
on real-world data [PSR∗14], testing the use of models cap-
tured with cheap depth sensors [MFP∗13], testing the fu-
sion of texture and shape features for retrieval [BCA∗14].
To reach this goal, we proposed tasks based on low quality
acquisitions (based on registration of point clouds acquired
with a depth sensor) of a set of plush toys in different poses
and with different illumination conditions. Participants were
asked to test untrained shape retrieval performances based
on only shape or on shape and texture information.

To allow an easy use of different descriptors proposed in
the past SHREC contests, we provided watertight meshes,

without texture or with interpolated color values stored as
vertex features, saved in ASCII Object File Format.

2. Data acquisition and proposed tasks

We decided to use plush toys to test the robustness of shape
retrieval methods against articulated and local deformations,
as they can be easily posed in different ways, present a mean-
ingful texture and the surface, acquired with depth sensor
may be noisy. We selected a set of 12 toys with approxi-
mately similar size (Figure 1) and for each model we ac-
quired 10 3D models. Poses are varied making the toys lying
on different sides and moving articulated parts.

3D models have been created by acquiring for each toy 4
different point clouds with a Asus Xtion Live Pro depth sen-
sor, capturing both depth and texture. The registration was
made easier by placing the toys over a platform with mark-
ers. Creation, printing and recognition of markers was real-
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Figure 1: The 12 different toys placed on the acquisition
platform.

ized using the ArUco toolkit [GJMSMCMJ14]. Each com-
plete point cloud was finally meshed with the Poisson al-
gorithm, with fixed parameters, in order to create a water-
tight model, and possibly simplified to remove degenerate
triangles or to change resolution. The non-textured dataset
DATA_NOT EX , in fact, was processed further by differen-
tiating the resolution of meshes with similar poses.

Two textured datasets were then obtained from the recon-
structed meshes and from the original textured point clouds
by means of two different procedures: in the first, used to
create the dataset DATA_T EX1, we generated a triangle
parametrization and extrapolated vertex color in the whole
mesh from this parametrization, in the second procedure,
used to create the dataset DATA_T EX2, we attributed to
each vertex the color of the closest point in the cloud within
a threshold distance, leaving white the mesh vertices too far
from the closest point.

For each model we first acquired the shape in a fixed
pose under 5 different illumination conditions. Illumination
was varied by putting lights in different positions around
the models. Then we acquired other 5 models with fixed
illumination conditions but changing the model pose, e.g.
putting a differend side on the platform, moving limbs or
other deformable parts. This results in both articulated de-
formations and local deformations due to the side in con-
tact with the platform. Renderings of textured models cap-
tured in different poses/illumination conditions are shown
in Figure 2. Data are now publicly available at the website
http://www.andreagiachetti.it/shrec15

We finally proposed three different contests for the three
datasets created: participants could freely decide to test their
methods on all the datasets or on selected ones. The fact

Figure 2: Example models captured with different
poses/illumination conditions

that the dataset features make the tasks extremely chal-
lenging was confirmed by the fact that of 9 groups reg-
istered for the contest, only 3 sent results for the evalua-
tion, including as required matrices and executable codes.
A.Tatsuma, C.Sanada and M. Aono from Toyohashi Uni-
versity of Technology sent results obtained on all the three
datasets based on Local Binary Pattern and Hue Histograms;
S.Biasotti and A.Cerri from IMATI-CNR sent results ob-
tained on all the three datasets using Spherical Harmonics
possibly coupled with Hue information, S. Choi from Seoul
National University sent results only for the non-textured
models, based on Geodesic Distance Matrices. These meth-
ods have been compared with different baseline techniques
tested by the organizers, e.g. Area+Volume, ShapeDNA and
Histograms of Area Projection Transform (HAPT) for non-
textured meshes; CIE u-v histograms alone or differently
coupled with HAPT for the textured meshes. All the meth-
ods are summarized in the following section.

3. Description of methods

3.1. Multiresolution Representation Local Binary
Pattern and Hue Histograms, by A. Tatsuma, C.
Sanada, and M. Aono

The Multiresolution Representation Local Binary Pattern
(MRLBP) histograms has been proposed in [BCA∗14] as
a view-based 3D shape descriptor. The overview of the
approach is illustrated in Figure 3. Authors performed
the Multidimensional Scaling method [EK03] to obtain the
canonical form of a 3D model as preprocessing. Here, to re-
duce the computational cost for the calculation of geodesic
distances, the number of vertices of the 3D model was down
sampled to about 1000 points. The transformed 3D model
was enclosed within a unit geodesic sphere after pose nor-
malization by the Point SVD [TA09]. From each vertex of
the unit geodesic sphere, authors rendered depth and color
buffer images with 256×256 resolution; a total of 38 view-
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Figure 3: Overview of the Multiresolution Representation
Local Binary Pattern (MRLBP) based approach described
in Section 3.1

points were defined. MRLBP and Hue histograms were used
as a feature vector for each view.

To capture shape features on a 3D model, the MRLBP his-
togram was calculated for each depth buffer image. Multires-
olution representations were obtained by applying a Gaus-
sian filter with varying standard deviation parameters to a
depth buffer image. In the chosen implementation, authors
selected 0.8, 1.4, 2.0, 3.2 and 6.8 for the standard devia-
tion parameters. For each filtered image, an LBP histogram
was computed. To incorporate spatial location information,
the filtered image was partitioned into 4× 4 blocks and the
64-bin LBP histogram was calculated at each block. The
MRLBP histogram was generated by merging the LBP his-
tograms of filtered images through the selection of the maxi-
mum value of each histogram bin. Moreover, to capture color
features on a 3D model, the Hue histogram was computed
for each color buffer image. The Hue histogram has invari-
ance to light intensity changes [vdSGS10]. The color buffer
image was partitioned into 4×4 blocks and a 6-bin Hue his-
togram was computed at each block.

The MRLBP and Hue histograms were l1 normalized and
mapped into the Jensen-Shannon kernel space [VZ12]. The
final feature vector for a view was obtained by concate-
nating the mapped MRLBP and Hue histograms for tex-
tured meshes. To compare two 3D models, the Hungarian
method [Kuh55] was applied to all pair dissimilarities be-
tween their feature vectors. The Euclidean distance was used
to estimate the dissimilarity between two feature vectors.
The method is referenced as T 1 in Section 5

4. Spherical harmonics, CIELab colour space and
persistence by S.Biasotti and A. Cerri

Authors of this submission proposed a shape signature aris-
ing from the progressive aggregation of three different, yet
complementary ingredients:

• A geometric description. This was obtained with the pop-
ular spherical harmonic (SH) descriptor introduced in
[KFR03]. Spherical harmonics are scale- and rotation-
invariant. Once a shape is normalized and uniformly vox-
elized, it is associated with an array (512 elements in our

implementation) encoding the indices of spherical har-
monic values of the shape.

• A purely colourimetric descriptor. CIELab colour coor-
dinates (L,a,b channels) at each point of a triangle mesh
were used to build a concatenated colour histogram (in the
current implementation, 128 bins for each colour chan-
nel). The CIELab colour space was considered here as it
well represents how human eyes perceive colours. Indeed,
uniform changes of coordinates in the CIELab space cor-
respond to uniform changes in the colour perceived by the
human eye. This does not happen with some other colour
spaces, for example the RGB space.

• A persistence-based colourimetric descriptor. Colour co-
ordinates (normalized L,a,b channels) are seen as either
scalar or multi-variate functions defined over the shape.
Here authors exploited the fact that in the CIELab colour
space, tones and colours are held separately: the L channel
is used to specify the luminosity or the black and white
tones, whereas the a channel specifies the colour as ei-
ther a green or a magenta hue and the b channel speci-
fies the colour as either a blue or a yellow hue. Follow-
ing [BCGS13], the colourimetric description was finally
included in the persistence framework.

Within this framework authors submitted one run for the
non-textured dataset, based on SH description only, and
three for the textured datasets, obtained as follows:
Run 1. (BC1) This was based on a simple geometric de-
scription. Each model was represented by the associated SH
descriptor. For two models S1 and S2, their geometric dis-
similarity dgeo(S1,S2) was measured as the L1-distance be-
tween the corresponding geometric descriptions;
Run 2. (BC2) The geometric description was enriched by
adding some colourimetric information. In order to do this,
CIELab colour histograms were included in the loop. Be-
yond the perceptual uniformity property directly inherited
by the CIELab colour representation, colour histograms be-
have well against localized colourimetric noise, even when
characterized by large variations in the L, a, b values. In-
deed, in this case colour distribution is not altered greatly.
For two models S1 and S2, their colourimetric dissim-
ilarity dclr(S1,S2) was measured as the L1-distance be-
tween the corresponding colour histograms; the final dis-
similarity score was given by the normalized weighted sum
λ1dgeo(S1,S2) + λ2dclr(S1,S2), with λ1 = 5 and λ2 = 1.
The difference in weights is motivated by the intuition that
geometry is more relevant than colour in assessing shape
(dis)similarity.
Run 3. (BC3) The contribution of CIELab colour his-
tograms was refined by introducing a persistence-based
colourimetric description [BCGS13]. Indeed, the stability
properties of persistence [CSEH07, CL15] imply robustness
against small variations in the L,a,b values. This also holds
when colour perturbations are widely spread over the surface
model, as in the case of slight illumination changes. Thus,
the idea was to use the persistence framework to comple-
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ment the robustness of colour histograms against localized
colourimetric noise. Precisely, the a, b coordinates were used
to jointly define a bivariate function, whereas L was used as
a scalar function. In this way, colour and intensity are treated
separately. For a model S, the two functions fL : S→ R and
fa,b : S→ R2 were considered, the former taking each point
x ∈ S to the L-channel value at x, the latter to the pair given
by the a- and the b-channel values at x, respectively. The
values of fL and fa,b were then normalized to range in the
interval [0,1]. Last, S is associated with the 0th persistence
diagram dgm( fL) and the 0th persistence space spc( fa,b):
these descriptors encode the evolution of the connectivity in
the sublevel sets of fL and fa,b in terms of birth and death
(i.e. merging) of connected components, see [BCGS13] for
more details. For two models S1 and S2, their persistence-
based distance dpers(S1,S2) was the normalized sum of the
Hausdorff distance dH (dgm1( fL),dgm2( fL)) between the
corresponding persistence diagrams, and the Hausdorff dis-
tance dH

(
spc1( fa,b),spc2( fa,b)

)
between the correspond-

ing persistence spaces. The final dissimilarity score was
given by the normalized weighted sum λ1dgeo(S1,S2) +
λ2dclr(S1,S2)+λ3dpers(S1,S2), with λ1 = 5, λ2 = 2/3 and
λ3 = 1/3.

4.1. Geodesic Distance Matrix by S. Choi

The author sent three runs only for the non textured task.
The runs are based on simple geodesic distance matrices
[SFH∗09]. Downsampling was applied to the models to ob-
tain 1.600 points per each mesh. Then geodesic distance ma-
trix were built by calculating all geodesic distances between
sampled points. Three variants of the method have been pro-
posed:
Histogram 1 (C1): Each model’s geodesic distance matrix
is converted into histogram. Model to model dissimilarity
was computed using Euclidean distance measure between
two histogram.
Histogram 2 (C2): Each model’s geodesic distance matrix is
converted into histogram. Model to model dissimilarity from
the correlation measure between two histograms.
Eigenvalue (C3): Each model’s geodesic distance matrix’s
top 50 eigenvalues were extracted and converted to a vec-
tor. Model to model dissimilarity was computed using mean
normalized Manhattan distance between two vectors.

4.2. Baseline methods by A.Giachetti

Three runs were proposed as baseline methods both for non-
textured and textured tasks.

For non textured shape retrieval we propose three simple
methods:
Area and Volume (G1): surface area and volume of
the meshes were computed and the two elements vector
obtained, normalized mapping the variable ranges in the
interval [0 1] was used as shape descriptor. Model to model
dissimilarity was estimated with Euclidean distance.

Shape DNA (G2): the first 100 eigenvalues of the Laplace
Beltrami decomposition were computed and used as
descriptor [RWP06]. The original code by M. Reuter
was used http://reuter.mit.edu/software/
shapedna/. Model to model dissimilarity was estimated
with Euclidean distance.
Histograms of Area Projection Transform (G3): His-
tograms of Area Projection Transform have been computed
with the method proposed in [GL12]. Considering the size
of the objects, a fixed discretization step of 4mm. was used
and the multiscale representation was based on 9 radii
ranging from r = 8mm to r = 36mm. Histograms at different
scales (computed on 12 bins) were then concatenated,
normalized and compared with the Cityblock distance.

For textured shape retrieval we propose three simple
methods based on adding the CIELab color histograms to
the shape descriptors. Only a and b components were con-
sidered as assumed to be less dependent on global illumina-
tion. Three runs were generated for each of the two textured
datasets:
Color Only: Cielab ab histogram (G1T): The distance
matrix is obtained only using color information from his-
tograms of the CIELab a and b components. Shape dissim-
ilarity is obtained measuring histogram differences with the
Chi-square distance.
HAPT + ab histogram matrix combination (G2T): The
distance matrix computed as in run G3 of the non textured
dataset is combined with the distance matrix obtained as in
run G1T of the textured cases.
HAPT + ab histogram feature combination (G3T): Fi-
nally a feature fusion approach was applied to the two his-
tograms used in G2T. The two histograms, after normaliza-
tion of the ranges into the [0 1] interval, were concatenated
and then compared with the Cityblock distance.

5. Evaluation

The retrieval performance of the methods were evaluated
according to the classical evaluation measures used in
[SMKF04], e.g. Nearest Neighbor (NN), First Tier (FT),
Second Tier (ST), e-measure (E) and Discounted Cumuated
Gain (DCG). Furthermore, Precision-Recall plots have been
analyzed and from the PR curves the Mean Average Preci-
sion (MAP), e.g. the average of all precision values com-
puted in each relevant object in the retrieved list was esti-
mated.

5.1. Retrieval of non-textured shapes

Table 1 shows the retrieval scores obtained on the full
dataset. While it is clear that the performances of Geodesic
Distances are quite poor, the other methods provide rea-
sonable results even if the scores are lower than those ob-
tained on other popular datasets. Looking also at the Aver-
age Precision-Recall curves, BC1 provides the best results
especially for higher recall rates, with T1 and G3 providing
close results.
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NN 1-Tier 2-Tier E DCG MAP
C1 0,37 0,21 0,36 0,23 0,52 0,26
C2 0,38 0,21 0,36 0,24 0,52 0,27
C3 0,18 0,12 0,23 0,15 0,43 0,17
T1 0,88 0,57 0,67 0,34 0,82 0,61
G1 0,40 0,38 0,60 0,34 0,64 0,41
G2 0,76 0,44 0,58 0,33 0,74 0,49
G3 0,81 0,53 0,67 0,34 0,79 0,58
BC1 0,83 0,60 0,71 0,37 0,82 0,63

Table 1: Retrieval scores obtained by the different runs on
the DATA_NOT EX database. Bold fonts indicate best re-
sults.

Figure 4: Averaged Precision vs Recall curves for all the
methods tested on the DATA_NOT EX dataset. Bold fonts
indicate best results.

If we analyze the results obtained on different subsets of
the data, we can however understand that the "good" meth-
ods, behave differently and are better adapted on different
model types. In fact, if we select only the subset of models
of objects acquired on the same approximate pose, but under
different illumination and differently remeshed (Table 2) it
is possible to see that the results are quite high as expected
and all the methods behave well with BC1 providing the best
results, nearly perfect.

On the other hand, if we select only the subset of mod-
els of objects acquired changing the pose, but not the illu-
mination conditions and the final resolution (Table 3) it is
possible to see that the results are lower as expected and
performances of BC1 and G2 are more relevantly decreased
than those obtained by T1 and G3. This fact can be inter-
preted with the fact that MRLBP and MAPT are more ro-
bust against nonrigid (and also non-isometric) deformations,
but more sensitive to acquisition noise and meshing, than
SH. This is reasonable condidering that the SH descriptor
is computed directly on voxelized shapes, and is therefore
insensitive to meshing problems.

Figure 5: Averaged Precision vs Recall curves obtained on
a the subset of models with relevant shape deformations.

5.2. Retrieval of textured shapes

Surprisingly, the addition of texture information seems to
help the retrieval less than expected. In fact, looking at the
scores obtained on the two textured datasets proposed, it is
evident that the retrieval performances are only marginally
improved or even not improved at all. This is evident looking
at the runs of Biasotti and Cerri (BC1,BC2,BC3), proposing
as first run a matrix obtained only from the shape descrip-
tor. The other two runs obtain results only minimally better
than the first. The same considerations hold, however, for
the method of Tatsuma et al. (T1): here the scores reported
in Table 4 and 5 are even worse than those obtained on the
non-textured dataset (Table 1), apart for the NN. A slightly
more evident improvement is obtained adding color infor-
mation to the MAPT (G2T,G3T) descriptor, even if also in
this case only for NN.

Results for the two datasets textured in different ways are
more or less the same, slightly better for the set with white
regions where texture is invisible (DATA_T EX2). This can
be seen comparing Tables 4 and 5. This is reasonable, as in
both cases a wrong information is in any case used to fill the

NN 1-Tier 2-Tier E DCG MAP
C1 0,55 0,36 0,51 0,20 0,62 0,47
C2 0,55 0,38 0,54 0,21 0,63 0,48
C3 0,20 0,13 0,19 0,12 0,38 0,19
T1 0,98 0,91 0,94 0,22 0,97 0,89
G1 0,33 0,29 0,58 0,21 0,59 0,45
G2 0,92 0,76 0,82 0,22 0,88 0,77
G3 0,97 0,86 0,93 0,22 0,94 0,86
BC1 1,00 0,95 0,97 0,22 0,99 0,92

Table 2: Results of the best methods on models of object
without pose changes but with different illumination condi-
tions and mesh postprocessing. Bold fonts indicate best re-
sults.
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non visible part. Note that the results on the two datasets are
also the same when only the color information is used for
retrieval as in runs G1T.

Note that color information is not negligible, as the run
G1T, using only color histogram information are acceptable,
considering the acquisition noise and varying illumination.
The fact that the combined use of color and shape does not
give tangible advantages, demonstrates that there is room
for a large room for improvements in the colour and shape
descriptors. However, considering the different approaches
proposed and the similar results, it seems that an effective
feature fusion is harder than it may be expected.

The average Precision vs Recall plots (Figure 6) reveal
that, as in the nontextured case, the use of SH descriptors
gives some advantages, especially at higher recall rates.

Also in the textured case, if we separate the data acquired
in different poses from the repeated acquisitions with similar
poses and varied illumination, the ranking of the three best
methods is completely different. Table 6 and Table 7 show
the results obtained on the fixed pose-varying illumination
subset and on the varied pose-fixed illumination subset. It is
clear that the methods based on SH are more robust against
the effect of illumination variations on the acquisition even
not exploiting color information, while MAPT and MRLBP
appear more robust against large deformations, as revealed
also by the specific PR plot represented in Figure 7. As ex-
pected, the color-only descriptor (G1T) performs very well
when no illumination changes are created.

To understand better the behavior of the best three meth-
ods, we plotted the sort of confusion matrices for the runs
T1, BC3 and G3T performed on DATA_T EX1 that are rep-
resented in Figure 8, Figure 9 and Figure 10. In these plots
models are ordered by class and for each query model in a
row, the columns represent the first 9 retrieved models with
color code depending on the retrieval order (black corre-
sponds to the nearest neighbor, slightly lighter gray to the
second retrieval, etc.). Looking at the matrices obtained, that
ideally should be block matrices with white squares every-
where except for 10x10 squares along the principal diagonal
(that is also white), it is possible to see that false positives are

NN 1-Tier 2-Tier E DCG MAP
C1 0,07 0,12 0,26 0,17 0,38 0,20
C2 0,07 0,12 0,27 0,16 0,38 0,20
C3 0,17 0,16 0,25 0,14 0,42 0,23
T1 0,73 0,43 0,56 0,19 0,67 0,52
G1 0,25 0,23 0,47 0,21 0,52 0,36
G2 0,38 0,29 0,49 0,21 0,56 0,40
G3 0,69 0,45 0,61 0,20 0,69 0,53
BC1 0,57 0,37 0,51 0,20 0,62 0,47

Table 3: Results obtained on models of object with pose
changes and constant illumination conditions. Bold fonts in-
dicate best results.

NN 1-Tier 2-Tier E DCG MAP
T1 0,89 0,44 0,53 0,27 0,75 0,49
BC1 0,83 0,60 0,72 0,37 0,82 0,63
BC2 0,83 0,60 0,72 0,37 0,82 0,63
BC3 0,85 0,60 0,72 0,37 0,83 0,64
G1T 0,73 0,31 0,39 0,20 0,64 0,33
G2T 0,88 0,39 0,47 0,24 0,72 0,44
G3T 0,91 0,52 0,65 0,34 0,81 0,58

Table 4: Results obtained on the DATA_T EX1 dataset. Bold
fonts indicate best results.

Figure 6: Averaged Precision vs Recall curves for all the
methods tested on the DATA_T EX1 dataset.

quite different for the different methods and are largely de-
pendent on classes and on subsets (illumination variations vs
pose variations). In fact, for all the classes, represented in the
figure with the plush toy icon, the set of 10 model is also or-
dered putting the 5 models with illumination variations first,
then the models with deformations. It is possible to see that,
for example, T1 and G3T are quite good in retrieving models
from the same class subset while rarely retrieve in the first 9
spots models belonging to the subset of the same class differ-
ent from the query one. This is revealed by the fact that the
block matrix structures seem actually made by 5x5 blocks
instead of 10x10 blocks. This is the reason why the methods
have lower scores than BC3 for higher recall rates.

NN 1-Tier 2-Tier E DCG MAP
T1 0,89 0,46 0,55 0,28 0,77 0,51
BC1 0,83 0,60 0,72 0,37 0,82 0,63
BC2 0,85 0,60 0,72 0,37 0,83 0,64
BC3 0,85 0,60 0,73 0,37 0,83 0,64
G1T 0,73 0,31 0,39 0,20 0,64 0,34
G2T 0,88 0,39 0,47 0,24 0,72 0,44
G3T 0,91 0,50 0,65 0,33 0,80 0,56

Table 5: Retrieval scores obtained on the DATA_T EX2
dataset. Bold fonts indicate best results.
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Figure 7: Averaged Precision vs Recall curves for all the
methods tested on a subset of DATA_T EX1 with large pose
variations and no illumination changes

6. Discussion

We created a novel dataset (distributed in different versions)
and proposed a SHREC 2015 contest to verify the robust-
ness of methods for the retrieval of deformable and option-
ally textured 3D shapes. The dataset has several challenging
features:

• It has been acquired with current low cost depth sensor
technology
• Objects are subject to articulated and non-isometric defor-

mations and can change their topology
• Real and relevant changes of illumination conditions are

represented
• Meshes are closed but meshed with different resolutions

From the analysis of the results submitted it is possible
to understand interesting facts. First of all, the best methods
proposed can deal with geometrical and topological noise
and deformations, but each one has different and specific
weaknesses. Color and shape information fusion did not
perform well. Retrieval performance also depends strongly
on class types. These facts may suggest that to apply suc-
cessfully 3D shape retrieval methods on noisy textured data
possibly acquired on deformable objects, research work is

NN 1-Tier 2-Tier E DCG MAP
T1 0,98 0,89 0,96 0,22 0,96 0,89
BC1 1,00 0,95 0,97 0,22 0,99 0,92
BC2 1,00 0,97 0,98 0,22 0,99 0,92
BC3 1,00 0,96 0,98 0,22 0,99 0,92
G1T 0,65 0,41 0,54 0,19 0,67 0,50
G2T 0,92 0,78 0,87 0,21 0,90 0,80
G3T 0,97 0,91 0,94 0,22 0,95 0,88

Table 6: Results obtained on a 60 models subset of
DATA_T EX1 with no large pose variations and relevant il-
lumination changes. Bold fonts indicate be results.

NN 1-Tier 2-Tier E DCG MAP
T1 0,82 0,58 0,72 0,21 0,76 0,67
BC1 0,57 0,38 0,52 0,20 0,62 0,47
BC2 0,57 0,41 0,56 0,20 0,64 0,49
BC3 0,58 0,42 0,56 0,20 0,64 0,49
G1T 0,82 0,63 0,76 0,21 0,80 0,70
G2T 0,83 0,60 0,75 0,21 0,80 0,68
G3T 0,79 0,53 0,70 0,21 0,75 0,60

Table 7: Results obtained on a 60 models subset of
DATA_T EX1 with large pose variations and no illumina-
tion changes. Bold fonts indicate best results.

Figure 8: The matrix represent the first 9 retrieved models
(columns) for each query shape (rows) given the distance
matrix of the run BC3. Plush toy icons correspond to the
class of the index ranges. Darker colors correspond to ear-
lier retrieval.

surely needed to find optimal ways to merge different de-
scriptors. Specific learning techniques could be also tested
in order to adapt the algorithms to the specific classes of in-
terest. We hope that the research efforts needed to overcome
the limitations of the current techniques will benefit from the
availability of our datasets and of their possible future exten-
sions.
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BRONSTEIN M., ET AL.: ShrecâĂŹ14 track: Shape retrieval of
non-rigid 3d human models. Proc. 3DOR 4, 7 (2014), 8. 1

[RWP06] REUTER M., WOLTER F.-E., PEINECKE N.: Laplace–
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