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Abstract

In this paper we report the results of the SHREC 2014 track on automatic location of landmarks used in man-

ual anthropometry. The track has been organized to test the ability of modern computational geometry/pattern

recognition techniques to locate accurately reference points used for tape based measurement. Participants had to

locate six specific landmarks on human models acquired with a structured light body scanner. A training set of 50

models with manual annotations of the corresponding landmarks location was provided to train the algorithms. A

test set of 50 different models was also provided, without annotations. Accuracy of the automatic location methods

was tested via computing geodesic distances of the detected points from manually placed ones and evaluating

different quality scores and functions.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Computer Graphics—

Applications

1. Introduction

The availability of whole body scanner devices is rapidly

changing the way anthropometric data are collected. Sets of

accurate measurements on high quality geometrical models

of the subjects bodies can, in fact, be automatically obtained

without the need of difficult and time-consuming manual

procedures. However, to validate digital measurements and

to integrate manually and digitally acquired data in longi-

tudinal studies, it could be important to compare the classi-

cal tape-based anatomical measurements with automatic or

semi-automatic measurements that can be performed on the

digital models.

Manual antropometry is based on the localization by spe-

cific landmarks on the body (as indicated in the International

Society for the Advancement of Kinanthropometry manual,

www.isakonline.com), that are located typically by palpa-

tion and using specific knowledge of the experienced anthro-

pometrist. The identification of these points on digital mod-

els is not very easy, due to the variability of human subjects’

features and the poor or missing geometrical characteriza-

tion of the points.

However, several novel and effective methods for salient

points recognition have been recently proposed in the liter-

ature thanks to the effort of the scientific groups involved

in the SHREC contests. Therefore, it is interesting to see

if, exploiting annotated training data and using state-of-the-

art point description and pattern recognition techniques it

is possible to locate automatically anthropometrical land-
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marks with a reasonable accuracy. The anthropometric re-

search community would strongly benefit from the availabil-

ity of an effective information retrieval tool for this task.

2. Dataset creation

Models were originally acquired during standard anthro-

pometric analysis in the Department of Neurological and

Movement Science, University of Verona with a structured

light 3D body scanner (Breuckmann BodyScan). In the orig-

inal textured models, anthropometric landmarks are visible

as white crosses on the skin texture, marked with a dermo-

graphic pen. For the recognition task we selected six land-

marks located in the right part of the body (Acromiale, Radi-

ale, Stylion, Iliocristale, Trochanterion, Tibiale laterale, see

figure on the left). The coordinates of the original points have

been manually annotated with the Meshlab [CCC∗08] Pick-

Point tool and saved before the further processing steps.

These steps are:

• Floor and noise removal. Floor and isolated points have

been removed with Meshlab scripts.

• Remeshing. Models have been remeshed with Poisson

method, preserving high resolution detail while creating

watertight triangulations

• Simplification. Models have been simplified in order to

have approximately 50000 nodes, avoiding the creation

of non-manifold edges.

• Anonymization. In order to avoid face recognition, we

automatically identified and selected the head region ex-

ploiting the annotated landmarks, and applied to it an it-

erated smoothing process.

• Coordinate transform. In order to have an easy discrimi-

nation of left and right landmarks, we transformed the ref-

erence systems of the models in order to have the x axis

approximately representing the mediolateral direction of

the body with negative coordinates representing the right

size. This allows an easy disambiguation of left/right sym-

metric salient points (we are interested in points with

x < 0 (right part of the body). An example of final mod-

els with the corresponding reference system is shown in

Figure 1.

Annotated anthropometric points were mapped on the

closest points in the new mesh.

We created a training set of 50 models. For each model of

the training set and for each of the six points we provided

participants with the triangle mesh in .ply format, a simple

text file with extension ".pts" storing the xyz coordinates, the

index of the closest vertex, the index of the closest triangle.

A test set with the same number of models was similarly

created, but only the meshes were available to the partici-

pants. Both training and test sets included males and female

examples. All data will be available on the contest web site

http://www.andreagiachetti.it/shrec14/.

Figure 1: Examples of preprocessed models with land-

marks’ annotations.

3. Proposed task, participants and proposed techniques

Participants were asked to localize the six specific landmarks

in the 50 models of the test set, given the corresponding

points localization in the training set. They could provide

either all the three fields included in the original annotations

(3D coordinates, closest node, closest face) or only one of

the fields (in this case we estimated the coordinates of the

points from nodes or face indexes or the indexes from the

3D coordinates for evaluation).

Six points localization methods have been proposed by

five different research groups. In the following, these meth-

ods are briefly described.

3.1. Graphical Models (GM) by C.Shu, P. Xi and S.

Wuhrer

This method is based on the observation that anthropomet-

ric landmarks are usually located on the skeletal joints of the

human body. The way a human expert locates landmarks is

by palpating the subject. This suggests that landmarks are

where the bones are close to the skin. Therefore, the surface

geometry local to the landmarks may have distinguishable

characteristics. On the other hand, the relative locations of

the landmarks reflect the human body structure. This infor-

mation can constrain the locations of the landmarks. Authors

used a Markov network to represent the structure of the land-

marks. The nodes of the graph represent the landmarks. The

edges of the graph encode the distance relationship between

neighboring landmarks (Figure 2). Finding the locations of

the landmarks is defined as finding a set of vertices on the
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scan such that its configuration is most compatible with the

Markov network. In this way, the landmark locating problem

is casted as a classification problem.

Figure 2: Landmark graph

The graphical model is trained using the manually marked

models. Once trained, belief propagation method is used to

find the optimal solution [YFW01].

When the Markov network is applied, the nodes of the

graph represent landmarks and the structure of graph cap-

tures the relative location of the landmarks on the human

body. In this case there are only six landmarks and they are

located on a linear curve. In general, the graph can be more

complex, even with loops.

Node features chosen by authors were curvatures and

SPIN images. They are both popular surface descriptors for

3-D models. To compute a SPIN image at a point on the

surface, a cylindrical-like coordinate system is created us-

ing the surface normal at the point. Every other point of the

model is projected onto this coordinate system and an image

is created by counting the number of points falling into each

bins [Joh97]. As a surface descriptor, SPIN image has a few

advantages. It is invariant to rigid transformation. Depending

on the range of projection, it can be both local and global. It

is also relatively robust to noise. The drawback of SPIN im-

age is that it is not a compact descriptor – it is necessary to

store an image for every vertex of the model. Therefore, it

is computationally expensive to use it for comparison. We

remedy this problem by compressing the SPIN images using

Principal Component Analysis.

Curvature has also been added to the local surface descrip-

tion. Certain landmarks, like the one on the elbow, have clear

distinguishable curvatures, invariant to rigid transformation.

However, curvature is defined on continuous surfaces and

the estimation of curvature on a mesh is sensitive to noise.

Based on the surface descriptors, a potential function

φi(li) for each landmark li is defined, representing the likeli-

hood of a vertex to be the ith landmark. For each edge {li, l j}
a compatibility potential ψi j(li, l j) is defined, representing

the spatial constraints of the two variables to be assigned

consistently. The joint probability over the Markov network

is given by:

p(L) =
1

Z
∏

i

φi(li)∏
i, j

ψi j(li, l j) (1)

where Z is a normalizing factor.

To train the graphical model, the node potential function

and edge potential function are modeled as Gaussian dis-

tributions of the feature vectors and the parameters of the

distribution functions are computed. For the node potential,

the feature vector consists of the SPIN image and the cur-

vature values at each landmark location. The edge potential

is modeled by a Gaussian distribution of the Euclidean dis-

tance between the two neighboring landmarks. In the train-

ing stage, the parameters of the distribution functions are es-

timated from the data.

Finding the landmarks amounts to maximizing the func-

tion defined by equation 1. This is a large-scale optimization

problem. Authors used belief propagation [YFW01] to solve

this problem.

The implementation proposed is based on the method de-

scribed in Ben Azouz et al [ASM06]. It has been extended

to predict landmarks for arbitrary postures [WAS10].

Running time: According to the authors, the training time

for the method on a 4-core Pentium CPU was six hours. The

labelling time for each test case about three minutes.

3.2. Spectral geometry based methods (SM) by C. Li, A.

Godil and A. Ben Hamza

Authors of this contibution adapted the spectral geometry

based methods [Li13] for landmark location in anthropome-

try. These methods are based on the eigendecomposition of

the Laplace-Beltrami operator (LBO). A course-to-fine pro-

cedure was applied to detect a given type of point. It con-

sists of two stages: (1) candidate estimation of landmarks

in the real line [LH13a], and (2) landmark detection via the

minimal sum dissimilarity of spectral graph wavelet signa-

ture [LH13b].

Candidate estimation Given a triangle meshed shape X ,

the second eigenfunction of LBO is the smoothest mapping

from the manifold to the real line, resulting in the ordering of

the vertices by their second eigenfunction values quite sta-

ble [LH13a]. Therefore, Authors use the index of ordered

vertices as the intrinsic coordinate, and normalized them in

the interval [0,1]. For each training sample, its landmarks

can be represented as P = (p1, ..., p6), where pi is the intrin-

sic coordinate of a specific landmark. To solve the two-sign

possibilities problem in the ordering, Authors used k-means

to seperate all P into two sets, within which the orderings

are consistent with manifolds. Authors inverted the vertices

ordering of the landmarks in one cluster, and the corrected

coordinate align well with the the ones in the other cluster.
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Figure 3: Statistic of landmarks on training set. (a) The cor-

rected intrinsic coordinates of 50 training samples. (b) Body

shape colored in the second eigenfunction

Figure 3 illustrates the statistic of corrected landmarks’ co-

ordinates on training samples.

For each specific type of landmark ℓ, the mean uℓ and

standard derivation σℓ of its intrinsic coordinates were ob-

tained. The candidate vertices were estimated as the ones

with the coordinate within [uℓ− 1
2 σℓ,uℓ+

1
2 σℓ].

Landmark detection: The second stage aims to finding

the optimal hypothesis from the candidate vertices. It is im-

plemented via the computation and comparison of the spec-

tral descriptor h(x) at each candidate vertex on the test-

ing samples and labeled landmarks on the training sam-

ples. In general, any one of spectral descriptors with the

eigenfunction-squared form reviewed in [LH13c] can be

used. Authors used the spectral graph wavelet signature

(SGWS) Sx(t,x) = ∑
m
i=1 g(t,λi)ϕ

2
i (x) as the local descrip-

tor; g(t,λi) is set as a cubic spline wavelet generating kernel

and the scaling function is considered. The resolution level

is set as 5.

Finally, each vector-valued descriptor is normalized in L2

norm, and dissimilarity between two descriptors is computed

as the Euclidean distance. The optimal hypothesis is deter-

mined as the the vertex with minimal sum dissimilarity to all

the labeled landmarks in that type.

Running time: The method is implemented in MATLAB

and is influenced by the computational complexity of the

LBO. For the proposed meshes with 50K vertices, it takes

about 250 seconds to compute the first 30 eigenpairs of LBO.

To compute the signature on a mesh, it takes less than one

second. To find the specific points on a testing sample, it

costs about 1.3 seconds. This means that the training time

was about 3.5 hours and finding points on a new model takes

about 4 minutes.

3.3. Augmented Point Feature Histograms (APFH), by

A. Tatsuma and M. Aono

Authors estimated specific points using a new local 3D

model descriptor and a support vector machine (SVM) clas-

sifier. The new local 3D model descriptor is known as aug-

mented point feature histogram (APFH). APFH expands

point feature histogram (PFH) [RMBB08] by adding the

statistics of its geometric features. PFH is a local feature

vector for 3D point clouds that construct a histogram of ge-

ometric features extracted from neighboring oriented points.

To improve the discriminant power of PFH the mean and

covariance of its geometric features have been added.

An overview of the proposed APFH is illustrated in Fig-

ure 4. With APFH, we first randomly generate oriented

points on a trianglar surface of a 3D model using the method

proposed in [OFCD02]. To generate random point p on an

arbitrary triangular surface comprising vertices va, vb, and

vc, we employ the following formula:

p = (1−√
r1)va +

√
r1(1− r2)vb +

√
r1r2vc. (2)

In the implementation proposed, two random variables, r1

and r2 in the above equation, are computed using the Nieder-

reiter pseudo-random number generator [BFN94]. The ori-

ented point is generated by inheriting the normal vector of

the surface as an orientation of the point.

Next, a PFH is built for each oriented point. A PFH lo-

cates the k-neighborhood for each oriented point and cal-

culates the four-dimensional (4D) geometric feature f =
[ f1, f2, f3, f4]

T as proposed in [WHH03]. The 4D geomet-

ric feature is defined for each pair of points pa and pb in the

k-neighborhood and for their normal vectors na and nb as

follows:

f1 = arctan(w ·nb,u ·na),

f2 = v ·nb,

f3 = u · pb −pa

d
,

f4 = d,

where u = na, v = (pb −pa)×u/||(pb −pa)×u||, w = u×
v, and d = ||pb − pa||. The PFH collects the 4D geometric

features in a 16-bin histogram fh. The index of the histogram

bin h is defined as follows:

h =
4

∑
i=1

s(t, fi) ·2i−1,

where s(t, f ) is a threshold function defined as 0 if f < t and

1 otherwise. We set the threshold value of f1, f2, and f3 to

0, and f4 to the average value of f4 in the k-neighborhood.

Furthermore, means and covariances of the 4D geometric

features are computed. Here, let fi be a 4D geometric feature

of an oriented point in the k-neighborhood. The mean fea-

ture fm and covariance feature fc in the k-neighborhood are

defined as follows:

fm =
1

k

k

∑
i=1

fi,
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Figure 4: Overview of the Augmented Point Feature His-

tograms (APFH)

fc = Upper

(

1

k−1

k

∑
i=1

(fi − fm)(fi − fm)
T

)

,

where Upper(·) concatenates the upper triangular part of the

matrix. APFH fAPFH comprises fh, fm, and fc.

Coordinates of the oriented point are also added to the

APFH feature. Finally, the APFH vector is normalized by ℓ2

normalization.

For the recognition of specific points, a probability esti-

mation algorithm using the SVM classifier [CL11,WLW04]

was applied. Set of APFHs extracted from the oriented

points located in the four neighborhoods in each labeled

point are used as the training dataset. In addition, randomly

select distant oriented points were selected from the labeled

points and their APFHs were added to the training dataset as

miscellaneous labeled data.

In the test phase, APFHs extracted from the oriented

points (with x < 0) were given to the classifier assigning the

label to the oriented point with the maximum probability for

each label, except for miscellaneous labels.

APFH parameters were set empirically. The number of

points chosen was 16384 and that of neighborhoods to 160.

For the SVM implementation, LIBSVM [CL11] was used

and optimization of the parameters was achieved using an

automatic script in the LIBSVM tools.

Running time: On a PC with Intel(R) Xeon(R) CPU E3-

1275 V2 @ 3.50GHz CPU,32 GB of memory, the feature

extraction (average running time per 3D model) took 6.616s,

the SVM training, 0.544s, the SVM predict 0.231s.

3.4. Landmark detection using ICP by T. Bonis, M.

Ovsjanikov, V. Pătrăucean

Due to the fact that the variability in the test data is

well represented in the training models, a brute force ap-

proach can be considered. Specifically, authors first ran the

rigid ICP algorithm between every pair < Mi
train,M

j
test >,

i = 1..N, j = 1..Nt, and for every test model kept the most

similar training model. The degree of similarity between two

models is given by the distance error between Mi
train and

RM
j
test, where R is the rigid transform (i.e. translation, ro-

tation) reported by ICP. The smaller the error, the better the

alignment.

Once obtained for every test model the most similar model

from the training set, a non-rigid ICP was performed for

each pair, and finally the landmark annotations were trans-

ferred from the training model to the (non-rigidly deformed)

test model.

The success of this approach relies on the assumption that

the training set contains a fairly similar model for every test

model.

Running time: A significant drawback is represented by

the complexity of the approach. Whilst the rigid ICP takes a

few seconds for each pair, hence few minutes to find for each

test model the most similar training model, the non-rigid ICP

can take up to 90 minutes to complete one pair. Hence a

rough estimate of the computational time needed to detect

the landmarks for one model can go as high as 100 minutes

on a regular (quad core) laptop. Thus, the practicality of the

approach is limited, since a human could label the landmarks

in only few minutes.

3.5. Landmark detection using local features (LF) by T.

Bonis, M. Ovsjanikov, V. Pătrăucean

In this machine learning approach, authors extracted de-

scriptors for the sought landmarks from the training models,

and used them to detect the landmarks on the test models.

This was accomplished by first extracting some reliable

stable points on the mesh, called by the authors anchor

points, and then by characterizing the sought landmarks with

respect to these anchor points. 8 different anchor points were

used, which correspond to: extremities of the hands and of

the legs, top of the head, axillae and pelvis region. Authors

chose these points as they represent local maxima and min-

ima of the body curvature and have high detection rates in

terms of repeatability. To detect them, they computed HKS

(Heat Kernel Signature) descriptors with a small time step,

and then identified the most prominent local maxima and

minima using persistence.

Subsequently, the sought landmarks were characterized

through the geodesic distances with respect to these an-

chors, and through HKM (Heat Kernel Maps) signatures that

use the anchors as source points. Additionally, HKS (Heat

Kernel Signature) descriptors were computed for each land-

mark. This yielded 38-dimension descriptors. For each land-

mark, authors considered the corresponding descriptors from

all training models, and applied PCA to reduce the dimen-

sion of the descriptor space to 20.

At test time, to label a new mesh, authors computed
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the 38-dimension descriptor for every point of the mesh,

and projected the obtained descriptors in the 20-dimension

spaces associated to the sought landmarks. Then they com-

puted the sum of the distances from each descriptor to the 15

nearest neighbours of the training set, and the vertex having

the smallest cumulative distance is declared to be the corre-

sponding landmark.

Running time: This approach takes less than one minute

to label a shape.

3.6. Surface to surface registration (STS) by J. Snyders,

P. Claes, D. Vandermeulen, P. Suetens

This method is based on surface-to-surface registration. One

sample in the training set was taken as an initial template

and registered to each of the other training samples. The re-

sulting objects represented the shape of the training samples,

but with corresponding points. Subsequently, geometric av-

erages for both the surface and the sample markers were cal-

culated. Remeshing was performed to ensure a good qual-

ity mesh. Once the template was built, it was registered to

the test set. The template markers were transformed along,

yielding an estimation of the anatomical landmarks that were

targeted.

The surface-to-surface registration was based on the orig-

inal work of TPS-RPM by Chui et al. [CR03] In an iterative

process, a correspondence search followed by the computa-

tion of a non-rigid spatial mapping was performed until con-

vergence. In this framework, as originally proposed, a deter-

ministic annealing process decreased the need for parameter

tuning.

Determining correspondences was done using weighted

k-Nearest Neighbours. The weighing is inversely propor-

tional to the Euclidean distance in a 6-dimensional space.

The first three dimensions account for the x-, y- and z-

coordinates of each node’s location, the last three for the

(scaled) x-, y- and z-coordinates of each node’s surface nor-

mal. The mapping of the template towards its correspond-

ing points was performed by a visco-elastic transformation

model. The reader is referred to [SCVS14] for further de-

tails.

Running time: On a Mac with 2.7GHz Intel Core i5 pro-

cessor and 16GB 1333 MHz DDR3 memory, both training

and obtaining the results each took around 40 minutes total

running two processes in parallel. Surface-to-surface regis-

tration takes about 1.5minutes per registration.

4. Evaluation

Only one method proposed (SM) annotated precise nodes

as output, all the others provided free cordinates on the sur-

faces. In any case we computed estimated closest nodes and

faces for all the annotated points and checked when these

points/faces corresponded to the manually annotated ones.

As shown in Tables 1 and 2, this happens in very few cases,

and this indicates that the triangulation used is sufficiently

dense for our analysis.

Geodesic distances of extracted points, added to the

meshes, from the manually annotated corresponding ones

have been then computed, and different validation measure-

ments have been evaluated:

• Average, standard deviation and median of the geodesic

distances between corresponding points (see Table 3)

• False negative error vs geodesic radius (percentage of

missed point detections considering correctly detected

only the landmarks within one geodesic radius from the

target one, see Figure 5).

Errors are higher than inter-human operator ones. Ref-

erence values found in literature for the median of inter-

observer manual operators errors are 11.5 mm. for Acromi-

ale, 5.0 mm. for Radiale, 5.3 mm. for Stylion, 10.8 mm. for

Trochanterion, 12.3 mm. for Iliocristale, 10.3 mm. for Tib-

iale [KM11]. These inter-observer errors are considered high

and the cited study shows that they can make derived mea-

sures performed by the two operators not comparable. This

means that current automatic landmarking methods cannot

locate the points with sufficient accuracy and that digital an-

thropometry should currently rely on specific methods or ge-

ometrically salient landmarks. The only landmark where the

lowest automatic error is close to the human one is Acro-

miale, that is probably the one with the highest geometric

saliency.

There is not a single method outperforming all the oth-

ers, but STS and GM are globally the best ones. STS seems

able to locate better Acromiale and Tibiale laterale. GM

outperforms all the other methods in the arms (Stylion

and Radiale). These two methods provide similar results

for Iliocristale, while GM is not so accurate for locating

Trochanterion, where the other registration-based approach,

ICP provides results very close to STS.

STS and GM have also a reasonable efficiency and can

compute landmarks in a a few minutes, a time suitable for

practical applications. APFH is clearly the faster method.

These results suggest that registration-based methods (or

methods based on global optimization) provide in general

better results than those based on local features, even if

context-aware. Surface registration seem to be less effective

for the landmarks in the arms, where the graph based method

is more accurate, but performs better in the other regions.

It should be noted that these methods should be less accu-

rate in case of varying poses (GM is based on SPIN images,

not pose independent, and registration is harder with non-

rigid transforms). Spectral methods like SM and LF should

instead provide similar accuracy with different poses, but

their errors were, however, rather high in this test.

The reason for the poor performance of spectral methods
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probably consists in the fact that the dataset of this con-

test includes a variety of different subjects, and transforms

among these subjects are not isometric. A simple method

suggested by the authors to improve SM labelling perfor-

mances would be to estimate the candidates and label the

testing model according to the several most similar subject

body shapes in the training set or the training shape with

most similar 2nd eigenfunction.

A larger training set would be certainly useful to increase

the accuracy of these modified methods and of other meth-

ods as well.

Acr. Rad. Styl. Troc. Iliocr. Tib.

SM 0 0 0 0 0 0

GM 3 1 3 1 1 1

APFH 1 1 0 1 1 0

ICP 0 0 0 0 1 2

LF 0 0 0 0 0 0

STS 2 0 3 0 3 4

Table 1: Number of "closest nodes" corresponding to

ground truth.

Acr. Rad. Styl. Troc. Iliocr. Tib.

SM 0 0 0 0 0 0

GM 1 2 1 0 0 1

APFH 0 1 2 0 0 0

ICP 0 0 3 0 0 0

LF 0 0 0 0 0 0

STS 2 2 1 0 2 2

Table 2: Number of "closest faces" corresponding to ground

truth.

meas. Acr. Rad. Styl. Troc. Iliocr. Tib.

SM mean(mm) 84.47 57.93 50.05 109.03 73.25 64.55

st.dev.(mm) 53.96 47.20 20.03 56.13 38.48 47.37

median(mm) 70.62 38.14 49.66 114.87 71.36 49.44

GM mean(mm) 17.74 17.70 14.21 34.26 22.82 22.98

st.dev.(mm) 11.47 13.32 10.49 17.83 12.25 14.06

median(mm) 15.45 14.14 12.11 30.87 20.70 20.80

APFH mean(mm) 37.63 30.49 25.44 46.83 36.63 31.76

st.dev(mm) 65.58 27.37 16.35 38.31 22.91 26.46

median(mm) 19.36 21.25 20.45 40.19 29.93 23.50

ICP mean(mm) 22.19 24.45 25.86 28.17 29.42 26.39

st.dev(mm) 16.74 15.26 12.64 12.55 14.86 10.53

median(mm) 18.02 21.45 22.13 26.69 25.40 25.59

LF mean(mm) 20.00 33.50 31.81 38.56 41.00 32.33

st.dev(mm) 10.93 23.07 21.62 22.46 23.28 17.48

median(mm) 17.80 24.50 25.33 32.63 39.69 29.55

STS mean(mm) 12.40 27.22 24.70 25.78 22.90 15.61

st.dev(mm) 6.68 19.55 21.36 13.82 12.96 8.66

median(mm) 11.60 23.05 17.21 25.24 19.99 15.46

Table 3: Average geodesic distance / standard deviation of

geodesic distance / median geodesic distance of detected

points from manually annotated ones for the different meth-

ods proposed.

5. Discussion

The limited accuracy obtained by automatic methods to

identify anatomical landmarks on human body meshes does

not mean that it will be impossible to have an automatical lo-

calization with accuracy similar to an expert anthropometrist

in the near future. It must be considered, in fact, that partici-

pants had a limited amount of time to optimize their methods

and the training set was relatively small.

Methods based on registration procedures performed bet-

ter thanks to the use of global optimization processes and

could be improved by using more complex and task-specific

registration models. Methods based on spectral point de-

scriptors were penalized by the non isometric transforms

mapping points across different body types. They could

greatly benefit from the availability of a large training set,

by combining the retrieval of most similar training shapes

to the mapping of the landmarks annotated on them on the

new shape. Landmarks localization is strictly related to the

problem of retrieving the closest shapes in the training set

or finding a good, continuous interpolation between training

shapes optimally fitting the test models.

We believe that the availaibility of contest data and re-

sults will be extremely useful for researchers interested in

improving the automatic landmarking accuracy and in com-

paring manual and digital anthropometry.
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