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Real time artifact-free image upscaling
Andrea Giachetti and Nicola Asuni

Abstract—The problem of creating artifact-free upscaled im-
ages appearing sharp and natural to the human observer is
probably more interesting and less trivial than it may appear. The
solution to the problem, often referred to also as ”single image
super-resolution”, is related both to the statistical relationship
between low resolution and high resolution image sampling and
to the human perception of image quality.

In many practical applications, simple linear or cubic inter-
polation algorithms are applied for this task, but the results
obtained are not really satisfactory, being affected by relevant
artifacts like blurring and jaggies.

Several methods have been proposed to obtain better results,
involving simple heuristics, edge modeling or statistical learning.
The most powerful ones, however, present a high computational
complexity and are not suitable for real time applications, while
fast methods, even if edge-adaptive, are not able to provide
artifacts-free images. In this paper we describe a new upscaling
method (ICBI, Iterative Curvature Based Interpolation) based
on a two step grid filling and an iterative correction of the
interpolated pixels obtained by minimizing an objective function
depending on the second order directional derivatives of the
image intensity. We show that the constraints used to derive the
function are related with those applied in another well known
interpolation method providing good results but computationally
heavy (i.e., NEDI [11]). The high quality of the images enlarged
with the new method is demonstrated with objective and subjec-
tive tests, while the computation time is reduced of 1-2 orders of
magnitude with respect to NEDI, so that we were able, using a
GPU implementation based on the nVidia CUDA technology, to
obtain real time performances.

I. I NTRODUCTION

Image upscaling, or single image super-resolution has re-
cently become a hot topic in computer vision and computer
graphics communities due to the increasing number of practi-
cal applications of the algorithms proposed.

Image upscaling (and more generally image interpolation)
methods are implemented in a variety of computer tools like
printers, digital TV, media players, image processing packages,
graphics renderers and so on. The problem is quite simple to be
described: we need to obtain a digital image to be represented
on a large bitmap from original data sampled in a smaller grid,
and this image should look like it had been acquired with a
sensor having the resolution of the upscaled image or, at least,
present a ”natural” texture.
Methods that are commonly applied to solve the problem (i.e.
pixel replication, bilinear or bicubic interpolation) does not
fulfil these requirements, creating images that are affected
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by visual artifacts like pixelization, jagged contours, over-
smoothing. For this reason a lot of improved algorithms have
been presented in literature (see [17] for a review). They
obviously rely on the assumption that, in natural images,
high frequency components are not equally probable if low
frequency components are known and a good algorithm is able
to guess the image pattern that would have been created by a
higher resolution sensor better than other methods.

The relationship between high resolution and low resolution
patterns can be learned from examples and, for this reason,
several researchers proposed to recover a statistical model
of it from a training set. Approaches like those presented
in [2], [16] try to classify patches according to the local
edge appearance, applying different interpolation strategies
depending on the results. More sophisticated techniques learn
the correspondence between high resolution and low resolution
image patches solving the problem of locally merging different
results to generate a continuous output. Algorithms of this
kind (example-based super resolution) can provide very good
results (see, for example, [6], [9], [10]), even if they need
a sufficiently representative set of examples. A possible way
to avoid the use of training images has been proposed in [8]
where patch recurrence in single images at different scales
and with different subpixel alignment is used in a framework
similar to classic multi-frame super-resolution.

Other problems of learning based approaches are related
to the fact that the a priori information used is not usually
valid for arbitrary scaling factors and to the fact that theyare
computationally expensive.

Realistic high frequency reconstruction is not the only issue
to be considered in choosing an interpolation approach: the
computational efficiency of the methods should also be taken
into account, especially in the case of real time applications
(i.e. to improve the perceived quality of video streaming).

Fast super resolution methods trying to obtain better results
than simple polynomial interpolators are not usually basedon
statistical modelling, but simply adapt the local interpolation
function to a low resolution estimate of local edge behaviour.
Simplest edge-adaptive methods ([3], [4], [13]), that could
easily reach real-time performances, are not, however, able
to create natural looking images, and often introduce relevant
artifacts.

On the other hand, more effective non-iterative edge-
adaptive methods like NEDI (New Edge Directed Interpolation
[11] or iNEDI (improved NEDI) [1], present a relevant com-
putational complexity, even higher than that of many learning-
based methods.

In this paper we propose a new image upscaling method able
to obtain artifact-free enlarged images preserving relevant im-
age features and natural texture. The method, as several edge-
directed ones, approximately doubles the image size every
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time is applied by putting original pixels in an enlarged grid
then filling holes. The hole filling is done in two steps, linearly
interpolating closest points in the direction along which the
second order derivative of the image brightness is lower. After
each hole filling step an iterative refinement is performed,
updating the values of the newly inserted pixels by minimizing
the local variations of the second order derivatives of the image
intensity while trying to preserve strong discontinuities.
Other optimization based methods, with different constraints,
have been proposed in literature. For example in [14] a
gradient profile prior derived from the analysis of natural
images and relating gradient profiles at different scales isused
to enhance sharpness; in [5] a statistical dependence relating
edge features of two different resolutions is forced; in [12]
a constraint related to the smoothness of isophote curves is
applied. In [15] the Gaussian Point Spread Function in the
classical backprojection scheme is locally modified according
to a local multiscale edge analysis.
These methods are often able to obtain good edge behavior,
even if sometimes at the cost of texture flattening. The
constraint used in our technique, based on the continuity of
the second order derivatives (that we prove to be related to the
NEDI constraint) is simple and extremely effective in remov-
ing artifacts; furthermore we use a smart initialization ofthe
interpolated pixels using second order derivatives information
that ensures a fast convergence, so that, implementing a GPU
version of the algorithm with CUDA technology, we were able
to obtain a real time high quality image upscaling.

The main contributions of our paper can be summarized in
the following items:

• A review of constant covariance constraint used in the
NEDI method with the proof of the relationship of that
constraint with the second order derivatives smoothness
used in our algorithm

• A new algorithm for image upscaling based on the
iterative smoothing of second order derivatives (ICBI,
Iterative Curvature-Based Interpolation). The algorithm
is initialized using a simple filling rule based on second
order derivatives (FCBI, Fast Curvature-Based Interpola-
tion) that can be considered an edge directed interpolation
algorithm too.

• A framework with test images and code for objec-
tive and subjective image quality evaluation. In our
tests against similar edge directed methods, our method
demonstrated to be an improvement over previous ones,
providing a reasonable reconstruction of the miss-
ing information and requiring considerably less com-
putational power than other methods achieving good
scores. Images and scripts are available at the web site
http://www.andreagiachetti.it/icbi so that other interpola-
tion techniques can be compared with those presented
here.

• A GPU implementation of the ICBI method able to
enlarge images at interactive frame rates.

The paper is organized as follows: Section II gives the basic
description of the particular class of image upscaling methods
based on grid doubling and hole filling, Section III describes

the NEDI algorithm, showing that some of its drawbacks can
be removed by changing the constant covariance constraint
with a more restrictive one, then Section IV demonstrates
the relationship between this constraint and the hypothesis
of second order derivatives continuity used in out new ICBI
method. Section V describes the new method in detail and
the experimental tests showing its advantages are reported
in Section VI. The GPU implementation realized using the
CUDA technology is described in Section VII.

II. I NTERPOLATION FROM4 NEIGHBORS: FAST METHODS

AND THE NEDI ALGORITHM

We focused our analysis on the ”edge-directed” interpola-
tion algorithms that, each time they are applied, approximately
duplicate the image size by copying original pixels (indexed by
i, j) into an enlarged grid (indexed by 2i, 2j) and then fillingthe
gaps with ad with ad hoc rules obtaining the missing values as
weighted averages of valued neighbors, with weights derived
by a local edge analysis. Algorithms of this kind are the well
known Data Dependent Triangulation [13] and NEDI [11], but
other similar techniques are, for example, described in [3], [4],
[7].

In these methods the higher resolution grid is usually filled
in two steps: in the first one, pixels indexed by two odd values
(e.g. darker pixel in Figure 1 A) are computed as a weighted
average of the four diagonal neighbors (corresponding to
pixels of the original image); in the second the remaining holes
(e.g. black pixel in Figure 1 B) are filled with the same rule,
as a weighted average of the 4 nearest neighbors (in horizontal
and vertical directions).

Fig. 1. Two steps interpolation based on a weighted average of four
neighbors.

For example, for the first step, the interpolated value is
usually computed as:

I2i+1,2j+1 = ~α · (I2i,2j , I2i,2j+2, I2i+2,2j , I2i+2,2j+2). (1)

and specific algorithms of this kind differ for the way they
estimate the coefficients vector~α = (α0, α1, α2, α3) from the
neighboring valued pixels in the grid.

In the Data Dependent Triangulation the weighted average
is computed setting to zero the weights of the two diagonally
opposite pixels that differs more among themselves, and to0.5
those of the other two. In the NEDI method [11] the weights
are computed by assuming the local image covariance (i.e.
the vectorα) constant in a large window and at different
scales. With this constraint, an overconstrained system of
equations can be obtained and solved for the coefficients.
Images upscaled with this method are visually better than those
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obtained with the previously described methods, especially
if some tricks are used to adapt window size and to handle
matrix conditioning, as done in [1]. However, even applying
the rule only in non-uniform regions and using instead a simple
linear interpolation elsewhere (as actually done in [11], [1]),
the computational cost of the procedure is quite high.

III. C ONSTANT COVARIANCE CONDITION REVISED: A

MODIFIED, WELL-CONDITIONED NEDI

If we analyze the locally constant covariance assumption
used in NEDI, we clearly see that it is not ideal to model
a classical step edge profile. In this case the brightness
changes only perpendicularly to the edge and it means that
the overconstrained system solved to obtain the parametersis
badly conditioned due to the rank deficiency of the problem
(the expected rank of the matrix to be inverted is 2 and not 4).
The simple solution we applied in [1] to avoid computational
problems consists of finding the minimum norm solution
using the pseudoinverse. Finding a different constraint leading
to a well-conditioned problem would be, however, more
satisfactory, as in the ill-conditioned case it would be possible
to have a completely absurd pattern satisfying exactly the
condition imposed to the local intensity.

We can obtain easily a better constraint by assuming that
coefficients inα multiplying opposite neighbors are equal. In
this case, we can write:

I2i+1,2j+1 = ~β · (I2i,2j +I2i+2,2j+2, I2i,2j+2+I2i+2,2j). (2)

and, assuming that this relationship is true with the same
coefficients in a neighborhood of the point and also at the
coarser scale, we can, as in the NEDI algorithm, write an
overconstrained system and solving it to findβ1 andβ2. In this
case, the inverted matrix if full-ranked. The solution is clearly
faster (about 35% in our experiments) and, most important,
the quality of the interpolation is the same obtained with the
NEDI method (see Section VI).

IV. NEDI CONSTRAINT AND THE ITERATIVE CURVATURE

BASED INTERPOLATION

If the condition 2 holds in a neighborhood and across
scales, it is reasonable to think that an algorithm iteratively
refining interpolated pixels by locally minimizing a function
that should be zero when the constraint is valid would be
effective in obtaining a good result. From 2, we have:

β1(I2i,2j − 2I2i+1,2j+1 + I2i+2,2j+2)+

β2(I2i,2j+2 − 2I2i+1,2j+1 + I2i+2,2j) =

(1− 2(β1 + β2))I2i+1,2j+1 (3)

One way to guarantee that this condition is locally true
is to assume that local approximations of the second order
derivatives along the two perpendicular directions,(I2i,2j −
2I2i+1,2j+1+I2i,2j), (I2i,2j+2−2I2i+1,2j+1+I2i+2,2j) divided
by the local intensityI2i+1,2j+1 are constant. If we assume
also that the local gain is null (β1+β2 = 1/2), we can impose

simply the constancy of the second order derivative estimates.
This is actually the condition we introduced in our new ICBI
(Iterative Curvature Based Interpolation) method.

The idea of ICBI is rather simple: in the two step filling
method described in Section II, after the computation of the
new pixel values with a simple rule (in our case we take the
average of the two neighbors in the direction of lowest second
order derivative, an algorithm we called FCBI, Fast Curvature
Based Interpolation), we define an energy component at each
new pixel location that is locally minimized when the second
order derivatives are constant. We then modify the interpolated
pixel values in an iterative greedy procedure trying to mini-
mize the global energy. The same procedure is repeated after
the second interpolation step.
Images obtained with this method do not present the evident
artifacts; adding additional terms to reduce the image smooth-
ing and heuristics to deal with sudden discontinuities, we ob-
tained results that compare favourably with other ”edge based”
techniques, with a computational cost that is compatible with
real time applications (see Section VII).

V. ICBI IN DETAILS

Let us describe the algorithm in details. The two filling
steps, as written before, are performed by first initializing
the new values with the FCBI algorithm, i.e., for the first
step, computing local approximations of the second order
derivativesĨ11(2i+1, 2j+1) andĨ22(2i+1, 2j+1) along the
two diagonal directions using eight valued neighboring pixels
(see Fig. 2):

Ĩ11(2i+ 1, 2j + 1) = I(2i− 2, 2j + 2) + I(2i, 2j)+

+I(2i+ 2, 2j − 2)− 3I(2i, 2j + 2)− 3I(2i+ 2, 2j) +

+I(2i, 2j + 4) + I(2i+ 2, 2j + 2) + I(2i+ 4, 2j)

Ĩ22(2i+ 1, 2j + 1) = I(2i, 2j − 2) + I(2i+ 2, 2j)+

+I(2i+ 4, 2j + 2)− 3I(2i, 2j)− 3I(2i+ 2, 2j + 2) +

+I(2i− 2, 2j) + I(2i, 2j + 2) + I(2i+ 2, 2j + 4) (4)

and then assigning to the point (2i+1,2j+1) the average of the
two neighbors in the direction where the derivative is lower:

I(2i,2j)+I(2i+2,2j+2)
2 if Ĩ11(2i+1, 2j+1) < Ĩ22(2i+1, 2j+1)

I(2i+2,2j)+I(2i,2j+2)
2 ; otherwise.

Fig. 2. At each step (here it is shown the first), the FCBI algorithm fills the
central pixel (black) with the average of the two neighbors in the direction
of lowest second order derivative (I11 or I22). I11 and I22 are estimated
using for each one the 8 valued neighboring pixels (evidentiated with different
colors).
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Interpolated values are then modified in an iterative proce-
dure trying to minimize an ”energy” function. This function
is obtained by adding a contribution for each interpolated
pixel, depending on the local continuity of the second order
derivatives and on other quantities that are minima when
desired image properties are reached.

The sum of these pixel components should be minimized
globally by varying the interpolated pixel values. It is clear
that the computational cost of the procedure could be high.
We apply, however, a greedy strategy just iterating the local
minimization of each pixel term. Being the initial pixel value
guess obtained with FCBI reasonable, the procedure leads
quickly to a local minimum that appears to be reasonable for
our task.

We said that the main energy term defined for each interpo-
lated pixel should be minimized by small changes in second
order derivatives. For the first interpolation step (fillinggaps
in the enlarged grid at locations(2i+ 1, 2j + 1)), we defined
this term as:

Uc(2i+ 1, 2j + 1) = (5)

w1(|(I11(2i+ 1, 2j + 1)− I11(2i+ 2, 2j + 2))|+

|(I22(2i+ 1, 2j + 1)− I22(2i+ 2, 2j + 2))|) +

w2(|(I11(2i+ 1, 2j + 1)− I11(2i+ 2, 2j))|+

|(I22(2i+ 1, 2j + 1)− I22(2i+ 2, 2j))|)

w3(|(I11(2i+ 1, 2j + 1)− I11(2i, 2j + 2))|+

|(I22(2i+ 1, 2j + 1)− I22(2i, 2j + 2))|) +

w4(|(I11(2i+ 1, 2j + 1)− I11(2i, 2j))|+

|(I22(2i+ 1, 2j + 1)− I22(2i, 2j))|) (6)

where I11, I22 are local approximations of second order
directional derivatives, computed as:

I11(2i+ 1, 2j + 1) = (7)

I(2i− 1, 2j − 1) + I(2i+ 3, 2j + 3)− 2I(2i+ 1, 2j + 1)

I22(2i+ 1, 2j + 1) = (8)

I(2i− 1, 2j + 3) + I(2i+ 3, 2j − 1)− 2I(2i+ 1, 2j + 1)

This energy term sums local directional changes of second
order derivatives. Weightswi are set to 1 when the first order
derivative in the corresponding direction is not larger than a
thresholdT and to 0 otherwise. In this way smoothing is
avoided when there is a strong discontinuity in the image
intensity. Assuming that the local variation of the gray level
is small, second order derivatives can also be considered an
approximation of the intensity profiles curvature. This is why
we call this term a ”curvature smoothing” term, and defined
the algorithm ”Iterative Curvature Based Interpolation” (ICBI).

The optimization procedure minimizing the sum of the cur-
vature smoothing terms is really effective in removing artifacts,
but tends to create oversmoothed image. The smoothing effect
can be only slightly reduced by replacing the second order
derivative estimation with the actual directional curvature.

In our experiments we found more effective the addition
of another energy term enhancing the absolute value of the
second order derivatives:

Ue(2i+ 1, 2j + 1) = (9)

−(|I11(2i+ 1, 2j + 1)|+ |I22(2i+ 1, 2j + 1)|)

This term creates sharper images, but can introduce artifacts,
so its weight should be limited. Another term we tested to
reduce artifacts is related to isophotes (i.e. isolevel curves)
smoothing. This is derived from [12], where an iterative
isophote smoothing method is presented, based on a local force
defined as

f(I) =

−
I1(i, j)

2I22(i, j)−2I1(i, j)I2(i, j)I12(i, j)+I11(i, j)
2I2(i, j)

I1(i, j)2 + I2(i, j)2

with I11, I22, I12, I1, I2 being local approximations of first and
second order directional derivatives. The related energy term
we applied is:

Ui(2i+ 1, 2j + 1) = f(I)|2i+1,2j+1I(2i+ 1, 2j + 1) (10)

with I11, I22 computed as before and

I12(2i+ 1, 2j + 1) = (11)

0.5(I(2i+ 1, 2j − 1) + I(2i+ 1, 2j + 3)−

I(2i− 1, 2j + 1)− I(2i+ 3, 2j + 1))

I1(2i+ 1, 2j + 1) = (12)

0.5(I(2i, 2j)− I(2i+ 2, 2j + 2))

I2(2i+ 1, 2j + 1) = (13)

0.5(I(2i, 2j + 2)− I(2i+ 2, 2j))

Actually this term has a very small influence in improving
the perceived and measured image quality.

The complete energy function for each pixel location
(2i + 1, 2j + 1), sum of the ”curvature continuity”, ”curva-
ture enhancement” and ”isophote smoothing” terms becomes
therefore:

U(2i+ 1, 2j + 1) = aUc(2i+ 1, 2j + 1)+

bUe(2i+ 1, 2j + 1) + cUi(2i+ 1, 2j + 1) (14)

Using this pixel energy, the first step of the iterative in-
terpolation correction (adjusting pixel values with two odd
indexes) is finally implemented as a simple greedy minimiza-
tion as follows: after the placement of the original pixels at
locations(2i, 2j) and the insertion of rough interpolated ones
at locations(2i+1, 2j +1), we compute, for each new pixel,
the energy functionU(2i + 1, 2j + 1) and the two modified
energiesU+(2i+ 1, 2j + 1) andU−(2i+ 1, 2j + 1), i.e. the
energy values obtained by adding or subtracting a small value
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Fig. 3. Selected images from the test database.

δ to the local image valueI(2i + 1, 2j + 1). The intensity
value corresponding to the lower energy is then assigned to
the pixel. This procedure is iteratively repeated until thesum
of the modified pixels at the current iteration is lower than a
fixed threshold, or the maximum number of iterations has been
reached. The number of iterations can be also fixed in order to
adapt the computational complexity to timing constraints.In
our implementation we change the value ofδ from an initial
value of4 to the unit value during the iteration cycle in order
to speed up the convergence.a, b and c andT were chosen
by trial and error in order to maximize the perceived and
measured image quality. Note that the value ofc and T are
not critical (if T = Imax and c = 0) results are only slightly
worse. If too large, the isophote smoothing term can introduce
a bit of false contouring, flattening texture. The ratio between
a and b determines a tradeoff between edge sharpness and
artifacts removal. Actually, it may be also a reasonable option
to use only the derivative-based constraint and to enhance
contrast in post processing.

After the second hole-filling step (assigning values to all the
remaining empty pixels), the iterative procedure is repeated in
a similar way, just replacing the diagonal derivatives in the
energy terms with horizontal and vertical ones and iteratively
modifying only the values of the newly added pixels.

VI. EXPERIMENTAL RESULTS

We tested the algorithms proposed on a database of
25 natural images selected from the morgueFile on-
line archive (http://morguefile.com). All images are sub-
ject to the license agreement available at the web page
http://morguefile.com/archive/terms.php. For our experimental
needs, we used images representing various objects, animals,
flowers and buildings. These categories were chosen because
they provide a wide range of colors and natural textures.
Selected files were RGB color images with a depth of eight
bits per channel. In all the previous equations we considered
grayscale images; color images can be enlarged in the same
way by repeating the procedures independently on each color
channel or by computing interpolation coefficients on the
image brightness and using them also for the other channels,
reducing the computational cost and avoiding color artifacts.

The high quality of the images obtained with the new
method can be clearly seen comparing the images upscaled of

the same factor with different methods (see Figures 4,5). How-
ever, we also performed both subjective and objective tests
in order to compare quantitatively the quality of the images
created with different methods and the related computational
cost.

A. Objective test

The objective test compares images obtained by down-
sampling the original images and then enlarging them with
different methods, with reference images obtained just down-
sampling the original ones to the corresponding size. We
performed this test on images converted to 8 bit grayscale,
being the use of all three color channel not relevant to this
test.

We created128×128 and256×256 subsampled version of
the original images and the downsampled reference images.
Different classes of algorithms required different reference
images to compensate the slightly different zoom factors
and translation created by the algorithms. Methods described
in Section II do not enlarge exactly the images by2×/4×
factors, being the exact enlargement at each step equal to
(2width − 1)/width horizontally and(2height − 1)/height
vertically.

In any case, we applied the exact or approximate2×
enlargement to the256× 256 images and the4× enlargement
to the 128 × 128 ones. Finally we measured the differences
between the upscaled images and the reference ones by
evaluating the Peak Signal to Noise Ratio, defined as:

PSNR = 20 log10
MAXPIX

∑
W

i=1

∑
H

j=1
(Iup(i,j)−Iorig(i,j))2

(W∗H)

(15)

whereIup(i, j) is the upscaled subsampled image,Iorig the
original one,W andH the image dimensions andMAXPIX
the end scale value of the pixel intensity. The results for a
2× enlargement of256× 256 images and4× enlargement of
128× 128 images are summarized in Table I.

Algorithms tested are bicubic interpolation, and well known
edge based methods, i.e. the technique described in [4], an
iterative methods based on isophotes smoothing derived from
[12], NEDI [11], the ”well conditioned” NEDI described in
Section IV, the improved NEDI described in [1], and the FCBI
and ICBI methods here described.

The choice of these algorithms (e.g NEDI-like and fast
edge directed methods) is related to the focus of the pa-
per (showing a fast algorithm related with the NEDI con-
straint). Any other method could, however, be tested with
the same experimental setup presented here: all the images
used and the evaluation scripts are available at the web site
http://www.andreagiachetti.it/icbi.

Bicubic interpolation was obtained with the Matlab builtin
function, the original NEDI Matlab code was kindly provided
us by prof. Xin Li, Chen’s method was implemented by us in
Matlab following the the description given in the cited paper.
All the others algorithms have been coded in Matlab for this
test.

The values obtained with the well conditioned NEDI
(wNEDI) method are inserted just to show that the algorithm
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Fig. 4. The enlargement of a natural image using pixel replication (in this case by a4× factor), creates obviously a pixelized result (see detail in A). Bicubic
interpolation (detail in B) removes this effect, but createsevident jagged artifacts (see near the arrow tip). Techniques like NEDI (C,D) provide better results
(even if at the cost of a high computational complexity), but still create evident artifacts due to effect of edge discontinuities in the window used to estimate
the covariance (see near the arrow tip). Images in C and D, thatappears identical, are obtained with the original NEDI constraint and the modified constraint
introduced in Section 3. The result obtained with the ICBI technique (E) does not present relevant artifacts.

Fig. 5. Comparison of different ”edge directed” interpolation methods. A: Image detail enlarged (4×) with pixel replication. B: the same detail enlarged by
a 4× factor with Chen’s edge directed method. C: the same detail enlarged with NEDI method. D: the same enlargement obtained with our fast curvature
based interpolation method (FCBI). E: the same enlargement obtained with our iterative curvature based iterative interpolation method (ICBI).

ICBI FCBI iNEDI wNEDI NEDI Chen Iso. Bic. NN
2× dB 31.07 29.82 30.64 29.71 29.71 29.50 29.47 30.36 28.13
4× dB 25.33 24.46 25.18 24.30 24.30 24.19 24.11 24.91 23.43

TABLE I
PEAK SIGNAL TO NOISE RATIOS(DB) OBTAINED BY COMPARING IMAGES

UPSCALED BY APPROXIMATELY2× AND 4× FACTORS WITH REFERENCE

IMAGES. THE ICBI METHOD PROVIDES THE BEST RESULTS.

indeed produces similar images with a lower computational
cost (see Table II).

The iterative method proposed provides the best results. The
accuracy is not much higher than iNEDI for4× enlargement,

but if we consider the computation time (Table II) the new
method appears clearly superior. Computation times reported
in tables are obtained with non optimized Matlab implemen-
tations on a Dell XPS M1210 laptop with an Intel Core2 Duo
T7200 2.0 GHz CPU.

ICBI FCBI iNEDI wNEDI NEDI Chen
2× time(s) 12.91 0.17 312.44 145.01 221.64 0.11
4× time(s) 13.30 0.18 372.83 189.97 293.36 0.12

TABLE II
AVERAGE COMPUTATION TIMES OBTAINED WITH NON-OPTIMIZED

MATLAB IMPLEMENTATIONS OF THE ALGORITHMS.
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The iterative nature of the ICBI algorithm can be also used
to adapt image quality to the available hardware performances.
In fact, by limiting the number of iterations we can obtain good
quality and artifact-free images with a reduced computational
cost. Table III shows the image quality (PSNR) and time
performances obtained with the ICBI algorithm varying the
maximum number of iterations. With just 5 iterations it is
possible to have a PSNR close to the best one obtained.
With more than 20 iterations the difference in PSNR becomes
negligible.

2 it. 5 it. 10 it. 20 it. 30 it.
2× time (s) 1.57 3.69 7.16 12.91 20.76
2× PSNR 30.62 30.93 31.05 31.07 31.07
4× time (s) 1.91 4.43 7.28 13.30 19.38
4× PSNR 24.92 25.23 25.31 25.33 25.33

TABLE III
BY FIXING A NUMBER OF ITERATIONS WITH THE ICBI ALGORITHM IT IS

POSSIBLE TO MEET TIMING CONSTRAINTS AND STILL OBTAIN GOOD

RESULTS. FIVE ITERATIONS ARE SUFFICIENT TO OBTAIN GOOD IMAGES.

Looking at the quantitative results, it must be also con-
sidered that some of the methods here tested are parameter
dependent and it is possible to obtain different results changing
parameters’ values. We tried to optimize the results on for all
the algorithms tested tuning parameters by trial and error (on a
different image set), but slightly different results couldsurely
be obtained with the different methods.

It should also be noted that optimizing methods in order to
achieve maximum PSNR is not necessarily the best thing to
do to have very good images, being PSNR not necessarily
corresponding to visually perceived quality. For example,
using ICBI we found that the PSNR values can be increased by
adding more weight to the sharpening term, but at the cost of
creating visible artifacts. We tested also different imagequality
measurements proposed in literature (e.g. those used in [17]
or the mean structural similarity [19]) to try to have a better
correlation between visible artifacts and quality measure, but
we did not see relevant differences in algorithm ranking or
in visual artifacts characterization. We preferred therefore to
test the perceived quality by making experiments with human
subjects.

B. Subjective test

In order to compare perceived image quality, we have taken
a subset of 10 of the previously described RGB images and
enlarged them by a4× factor with six different algorithms
(NEDI, iNEDI, bicubic, Chen’s, FCBI, ICBI). We then asked
a group of 12 people to compare them, in order to select the
method providing the best average ”perceived quality”. All
the different possible couples of corresponding images were
presented (in random order) to the subjects involved in the
test, who were asked to choose the preferred image for each of
them. An LCD display was used to represent image couples at
full resolution on a screen surface of about17×17 centimeters.

The sum of the successful comparisons for each interpola-
tion method was then taken as the quality score of the method
itself. The average scores (total number of preferences divided

by the number of images multiplied by the number of subjects)
are reported in Figure 6.

Fig. 6. Average qualitative scores obtained by a group of 12 people
comparing pairs of differently enlarged (4×) images and selecting for each
pair the preferred one. The score of each algorithm is the average number of
preferences of the algorithm on the 5 comparisons made by each person on
each image.

We can observe some differences between the results ob-
tained and the results of the objective test. FCBI is now
preferred to bicubic interpolation, even if this one obtained
better results in the objective test. The reason is that edge-
directed interpolation methods are able to remove jagged
artifacts that strongly affect bicubic interpolation.

The low number of subjects limits the statistical relevance
of the test, but it is clear that images enlarged with ICBI and
iNEDI appear evidently of higher quality than those interpo-
lated with other methods compared. ICBI is usually preferred
except when the image is not characterized by high frequency
textures (causing the former method to create artifacts like
those visible in Fig 5 C) and the user judgement of “high
quality” is more related to sharpness than on artifact removal.
This is somehow expected, we have, in fact, shown that the
two methods are based on strongly related constraints. iNEDI
is subject to artifacts when the second order derivatives are
not continuous due to the assumption of covariance constancy
in a large area.

C. Image sharpness and artifacts

Subjective tests reveals that quality scores should be ana-
lyzed with care, being the perception of image quality related
to image contents and to different factors that may be weighted
differently according to the user’s needs. It has been shown
(see [18]) that the decrease in the perceived ”image quality” is
related to a linear combination of blurriness and artifacts, with
higher weight given to blurriness (most people seem to prefer
an increase in sharpness rather than a similarly noticeable
artifact removal). This is probably one of the reasons why,
for the enlargement of high resolution images for printing
enhancement, photographers often use software that does not
create natural detail or maximize similarity between high
resolution patches and low resolution upsampled ones. De-
fault options of professional photo zooming software usually
strongly enhance contrast and straight lines, locally flattening
texture. Of course, this is not necessarily a good choice if the
enlarged bitmap should preserve detail recognition, realism
and a correct depth perception from defocus.
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Learning based methods are also able to reconstruct sharp
detail at the risk of creating ”hallucinated” objects, and the
perceived quality may be good or bad according to the fact
that the detail is realistic or not in that position.

It seems, therefore, a reasonable statement to say that there
is not an interpolation method that is ideal in any condition: the
choice of the algorithm is largely dependent on the application.

The ICBI method proposed here is, in our opinion extremely
effective in removing sampling artifacts, even if it does not
enhance strongly lines and contrasted edges and results appear
a bit oversmoothed. If the user wants to obtain images with
less defocusing and enhanced contours, the final result can
be, however, post-processed with sharpening filters to obtain a
more contrasted image or clearer lines, without creating texture
appearing too artificial or “painted” (see Figure 7).

The other good feature of the method here proposed is the
low computational complexity that allowed us to obtain real
time performances with a GPU implementation, as we will see
in the next section.

VII. CUDA IMPLEMENTATION AND REAL TIME

INTERPOLATION

CUDA is a technology developed by nVidia allowing pro-
grammers to write code that can be uploaded and executed
in recent nVidia graphics cards, exploiting their massively
parallel architecture in order to obtain a relevant reduction
of the computing time. C++ developers can write particular
functions called ”kernels” that can be called from the host
and executed on the CUDA device simultaneously by many
threads in parallel.

Using this technology, we implemented the ICBI algorithm
by creating several CUDA kernels corresponding to the differ-
ent steps of the algorithm. In this way computation performed
in different blocks of the image can be executed in parallel,
while the execution of the different steps is synchronized (see
Figure 8). A first kernel creates the high resolution image from
the low resolution one, a second fills odd pixels with the FCBI
method, then two kernels computing derivatives and correcting
the interpolated values are executed repeatedly. The second
interpolation step is implemented in the same way, with a first
kernel inserting new pixel values, and the iterative call ofthe
two kernels computing derivatives and locally changing the
interpolated values optimizing the energy function.

With this implementation, we obtained the4× enlargement
of 128×128 color images in 16.2 ms on average, correspond-
ing to a ideal frame rate of 62 frames per second and the
2× enlargement of256 × 256 images in 12.3ms on average
using a nVidia GeForce GTX280 graphic card (240 cores) and
obtaining the same image quality of the Matlab and C version
of the code.

This example implementation clearly shows the possibility
of applying ICBI for real time applications.

VIII. D ISCUSSION

In this paper we discussed several issues related to the
problem of creating high quality upscaled images from low
resolution original data. First we showed that the well known

Fig. 8. Flow chart representing the execution of the CUDA ICBI imple-
mentation. Ellipses represent kernels where matrices are processed in parallel
creating multiple threads each one processing a separate block.

NEDI method can be slightly modified removing the necessity
of solving ill conditioned overconstrained systems of equations
and obtaining the same image quality. Then we showed how
the modified NEDI constraint is related to the constraint used
in our new ICBI (Iterative Curvature Based Interpolation)
technique. This technique uses mainly the assumption that
the second order derivatives of the image brightness are
continuous along the interpolation directions and is able to
obtain very good results, especially for its ability of removing
artifacts without creating ”artificial” detail, as proved by our
objective and subjective tests. The new technique, based on
a greedy minimization of an energy function defined at the
interpolated pixel locations, is not computationally expensive
like example based methods or the NEDI procedure and it is
easily parallelizable. This allowed us to implement, exploiting
the nVidia CUDA Technology, a version of the algorithm able
to work at interactive frame rates on commodity graphics
cards.
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