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Real time artifact-free image upscaling

Andrea Giachetti and Nicola Asuni

Abstract—The problem of creating artifact-free upscaled im- by visual artifacts like pixelization, jagged contours,eov
ages appearing sharp and natural to the human observer is smoothing. For this reason a lot of improved algorithms have
probably more interesting and less trivial than it may appear. The been presented in literature (see [17] for a review). They

solution to the problem, often referred to also as "single image bvi | | th ti that. i tural |
super-resolution”, is related both to the statistical relationship OPVIOUSly T€ly On he assumption that, in natural images,

between low resolution and high resolution image sampling and high frequency components are not equally probable if low
to the human perception of image quality. frequency components are known and a good algorithm is able

In many practical applications, simple linear or cubic inter-  to guess the image pattern that would have been created by a
polation algorithms are applied for this task, but the results higher resolution sensor better than other methods
ob;ained are not_really sz_:ltisff_:lctory, being affected by relevant The relationship between high resolution and low .resoﬂutio
artifacts like blurring and jaggies. P 9 .

Several methods have been proposed to obtain better results, Patterns can be learned from examples and, for this reason,
involving simple heuristics, edge modeling or statistical learning. several researchers proposed to recover a statistical Imode
The most powerful ones, however, present a high computational of it from a training set. Approaches like those presented
complexity and are not suitable for real time applications, while in [2], [16] try to classify patches according to the local

fast methods, even if edge-adaptive, are not able to provide d Vi diff tint lati fate
artifacts-free images. In this paper we describe a new upscaling edge appearance, applying ditferent interpolation sy

method (ICBI, Iterative Curvature Based Interpolation) based depending on the results. More sophisticated techniques le
on a two step grid filing and an iterative correction of the the correspondence between high resolution and low résolut

interpolated pixels obtained by minimizing an objective function image patches solving the problem of locally merging défer
depending on the second order directional derivatives of the .oqits to generate a continuous output. Algorithms of this

imag_e intensity. We sh_ow that the cqnst(aints used to derive the kind (example-based super resolution) can provide verdgoo
function are related with those applied in another well known P p P g

interpolation method providing good results but computationally results (see, for example, [6], [9], [10]), even if they need
heavy (i.e., NEDI [11]). The high quality of the images enlarged a sufficiently representative set of examples. A possiblg wa
with the new method is demonstrated with objective and subjec- to avoid the use of training images has been proposed in [8]
tive tests, while the computation time is reduced of 1-2 orders of \ynere patch recurrence in single images at different scales
magnitude with respect to NEDI, so that we were able, using a . - . - . .
GPU implementation based on the nVidia CUDA technology, to a.nd_ with d|ﬁerqnt subp|xel alignment is usgd in a framework
obtain real time performances. similar to classic multi-frame super-resolution.
Other problems of learning based approaches are related
to the fact that the a priori information used is not usually

l. INTRODUCTION valid for arbitrary scaling factors and to the fact that tleeg
Image upscaling, or single image super-resolution has g@mputationally expensive.
cently become a hot topic in computer vision and computer Realistic high frequency reconstruction is not the onlyéss
graphics communities due to the increasing number of prad® be considered in choosing an interpolation approach: the
cal applications of the algorithms proposed. computational efficiency of the methods should also be taken
Image upscaling (and more generally image interpolatiolto account, especially in the case of real time applicatio
methods are implemented in a variety of computer tools likée. to improve the perceived quality of video streaming).
printers, digital TV, media players, image processing pgels,  Fast super resolution methods trying to obtain better tesul
graphics renderers and so on. The problem is quite simple tothan simple polynomial interpolators are not usually based
described: we need to obtain a digital image to be repregenggatistical modelling, but simply adapt the local integdan
on a large bitmap from original data sampled in a smaller,gritinction to a low resolution estimate of local edge behaviou
and this image should look like it had been acquired with @implest edge-adaptive methods ([3], [4], [13]), that doul
sensor having the resolution of the upscaled image or, st,legasily reach real-time performances, are not, howeveg abl
present a "natural” texture. to create natural looking images, and often introduce aglev
Methods that are commonly applied to solve the problem (j.@rtifacts.
pixel replication, bilinear or bicubic interpolation) doe@ot ~ On the other hand, more effective non-iterative edge-

fulfil these requirements, creating images that are affiectadaptive methods like NEDI (New Edge Directed Interpolatio
[11] or INEDI (improved NEDI) [1], present a relevant com-
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time is applied by putting original pixels in an enlargeddgrithe NEDI algorithm, showing that some of its drawbacks can
then filling holes. The hole filling is done in two steps, linga be removed by changing the constant covariance constraint
interpolating closest points in the direction along whitle t with a more restrictive one, then Section IV demonstrates
second order derivative of the image brightness is loweterAf the relationship between this constraint and the hypahesi
each hole filling step an iterative refinement is performedf second order derivatives continuity used in out new ICBI
updating the values of the newly inserted pixels by minimgzi method. Section V describes the new method in detail and
the local variations of the second order derivatives of thege the experimental tests showing its advantages are reported
intensity while trying to preserve strong discontinuities in Section VI. The GPU implementation realized using the
Other optimization based methods, with different consteai CUDA technology is described in Section VII.

have been proposed in literature. For example in [14] a

gradient profile prior derived from the analysis of naturall|. | NTERPOLATION FROM4 NEIGHBORS FAST METHODS
images and relating gradient profiles at different scalesésl AND THE NEDI ALGORITHM

to enhance sharpness; in [5] a statistical dependenceéntelat We focused our analysis on the "edge-directed” interpola-

edge features of two different resolutions is forced,; in][l%ion algorithms that, each time they are applied, approtétya
a constraint related to the smoothness of isophote curves s . . L : . e
applied. In [15] the Gaussian Point Spread Function in tk(]jéjsphcate the image size by copying original pixels (indekg

. - . o . i, ]) into an enlarged grid (indexed by 2i, 2j) and then fillitinge
classical backprOJectlon scheme IS locally modified acegyd gaps with ad with ad hoc rules obtaining the missing values as
to a local multiscale edge analysis.

. weighted averages of valued neighbors, with weights deérive
These_ method_s are often able to obtain good edge_ behavb 'a local edge analysis. Algorithms of this kind are the well
even if sometimes at the cost of texture flattening. T

. ) . 2 own Data Dependent Triangulation [13] and NEDI [11], but
constraint used in our technique, based on the contmuny&

the second order derivatives (that we prove to be relatebleto\ﬁ] er similar techniques are, for example, described in[{3]
NEDI constraint) is simple and extremely effective in remo

ing artifacts; furthermore we use a smart initializationtloé
interpolated pixels using second order derivatives infidiom
that ensures a fast convergence, so that, implementing a
version of the algorithm with CUDA technology, we were abl
to obtain a real time high quality image upscaling.

In these methods the higher resolution grid is usually filled
in two steps: in the first one, pixels indexed by two odd values

Giglg darker pixel in Figure 1 A) are computed as a weighted
verage of the four diagonal neighbors (corresponding to

%ixels of the original image); in the second the remaininigfo

. o . (e.g. black pixel in Figure 1 B) are filled with the same rule,
The main contributions of our paper can be summarized Ji 5 weighted average of the 4 nearest neighbors (in haaizont

the following items: and vertical directions).

o A review of constant covariance constraint used in the
NEDI method with the proof of the relationship of that Az_2

2i-2 2i-1 21 2i+1 2i+2 2i+3 2i+4 B 2i-2 2i-1 2 2i+1 2i+2 2i+3 2i+4

constraint with the second order derivatives smoothness Z'H °© e o ° 2; © ° © ° © ° ©
used in our algorithm , O ©O O O ., O O O o
« A new algorithm for image upscaling based on the ., PY 2 °® PY
iterative smoothing of second order derivatives (ICBI, 2 o ©o o o EPENG) @ o
Iterative Curvature-Based Interpolation). The algorithm 2 23 P P
is initialized using a simple filling rule based on second 2+ © © ©0 © # O O O O

order derivatives (FCBI, Fast Curvature-Based Interpola-
tion) that can be considered an edge directed interpolatipﬁ
algorithm too.

« A framework with test images and code for objec- For example, for the first step, the interpolated value is
tive and subjective image quality evaluation. In OUfisually computed as:
tests against similar edge directed methods, our method
demonstrated to be an improvement over previous ones{2i+1,2j+1 = @ (1225, [2i2j+2, [2i4+2,2j; [2i+2,2j+2)- (1)
_prov!dmg a reasonable reconstruction of the MISYhd specific algorithms of this kind differ for the way they
ing information and requiring considerably less COM:qtimate the coefficients vectar— (a0, a1, i, g) from the
putational power than other methods achieving go%iighboring valued pixels in the gridf B

sco.res. Images apd SCI’.I[.)'[S. are available at.the web Sltefn the Data Dependent Triangulation the weighted average
http./ /W'andreag'aChett"'t/'Cb' S0 that_ other interpola- is computed setting to zero the weights of the two diagonally
tion techniques can be compared with those presentg osite pixels that differs more among themselves, afidsto
here. . . those of the other two. In the NEDI method [11] the weights
- A GPU .|mpIement.at|on qf the ICBI method able toare computed by assuming the local image covariance (i.e.
enlarge images at interactive frame rates. the vectora) constant in a large window and at different
The paper is organized as follows: Section Il gives the basicales. With this constraint, an overconstrained system of
description of the particular class of image upscaling m@sh equations can be obtained and solved for the coefficients.

based on grid doubling and hole filling, Section Il descsibdmages upscaled with this method are visually better thaseth

. 1. Two steps interpolation based on a weighted averdgé®ouw
ghbors.
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obtained with the previously described methods, espgcialimply the constancy of the second order derivative esémat
if some tricks are used to adapt window size and to handlis is actually the condition we introduced in our new ICBI
matrix conditioning, as done in [1]. However, even applyin@terative Curvature Based Interpolation) method.

the rule only in non-uniform regions and using instead a #mp The idea of ICBI is rather simple: in the two step filling
linear interpolation elsewhere (as actually done in [11]),[ method described in Section Il, after the computation of the

the computational cost of the procedure is quite high. new pixel values with a simple rule (in our case we take the
average of the two neighbors in the direction of lowest sdcon
111. CONSTANT COVARIANCE CONDITION REVISED A order derivative, an algorithm we called FCBI, Fast Curkatu
MODIFIED, WELL-CONDITIONED NEDI Based Interpolation), we define an energy component at each

: .new pixel location that is locally minimized when the second

If we analyze the locally constant covariance assumption L . .
. . . rder derivatives are constant. We then modify the intexteal

used in NEDI, we clearly see that it is not ideal to model. : . . i -

ixel values in an iterative greedy procedure trying to mini

a classical step edge profile. In this case the bnghtn«%lsge the global energy. The same procedure is repeated after

changes only perpendicularly to the edge and it means ttae second interpolation step.

the overconstrained system solved to obtain the paramister . ; . .
badly conditioned due to the rank deficiency of the problefrr]m‘geS obtained with this method do not present the evident

(the expected rank of the matrix to be inverted is 2 and not j%rtifacts; adding additional terms to reduce the image $moo
|

: . S ; . g and heuristics to deal with sudden discontinuities, Wwe o
The simple solution we applied in [1] to avoid computanone} ; . N ,
. T L . _Tained results that compare favourably with other "edgetias
problems  consists of finding the minimum norm SOIUno?echni ues, with a computational cost that is compatibké wi
using the pseudoinverse. Finding a different constrasndiley ques, P P

to a well-conditioned problem would be, however, mortreeaI time applications (see Section V).

satisfactory, as in the ill-conditioned case it would begille
to have a completely absurd pattern satisfying exactly the
condition imposed to the local intensity. Let us describe the algorithm in details. The two filling
steps, as written before, are performed by first initiatizin
We can obtain easily a better constraint by assuming thiié new values with the FCBI algorithm, i.e., for the first
coefficients ina: multiplying opposite neighbors are equal. Irstep, computing local approximations of the second order
this case, we can write: derivativesf11(2z'+17 2j+1) andf22(2i+1, 2j+1) along the

> two diagonal directions using eight valued neighboringefsix
Ipit12j41 = B-(T2i25 + Iiv2.2j4+2, 12i 2j4+2 + I2it2,25). (2) (see Fig. 2): geg 9 e

V. ICBI IN DETAILS

and, assuming that this relationship is true with the sa . . . . s
coefficients inga neighborhood of thpe point and also at %M + 1,25+ 1) =120 = 2,27 +2) + 1(2, 2j)+
coarser scale, we can, as in the NEDI algorithm, write an /(20 +2,2j —2) — 31(2i,2j + 2) — 31(2i + 2,2j) +
overconstrained system and solving it to fifidand3,. In this +1(20,25 +4) +1(2i + 2,25 +2) + I1(2i + 4, 25)
case, the inverted matrix if full-ranked. The solution isaly  7,,(9; 1 1,25 + 1) = (2,25 — 2) + I(2i + 2,2j)+

faster (about 35% in our experiments) and, most important, . . s . :

the quélity of the interpolatiolz is the s;me obtained V\?ith th +1(2i +4,2) +2) - 31(2i,2)) - 31(2i + 2,2j + 2) +
NEDI method (see Section VI). +1(20 —2,25) +1(26,2j +2) + [(20 + 2,25 +4)  (4)

and then assigning to the point (2i+1,2j+1) the average ®f th
IV. NEDI CONSTRAINT AND THE ITERATIVE CURVATURE  two neighbors in the direction where the derivative is lawer
BASED INTERPOLATION

" . . 1(2i,2§)+1(2i+2,2j s . - )
If the condition 2 holds in a neighborhood and acrosa -2t (;HQ 22 [y(204 1,2+ 1) < D (20 41,25 +1)

scales, it is reasonable to think that an algorithm iteeftiv (2220 F1(212742) . gtherwise.
refining interpolated pixels by locally minimizing a funmti
that should be zero when the constraint is valid would be
2i2 20 2i+12i+2  2i+4 212 20 2i+12i+2  2i+4

effective in obtaining a good result. From 2, we have:
220 O O O 220 O O O

B1(I2i2j — 2L2i41,2j41 + T2iv2,2j42)+ 20 ON\® O 20 @ OF O
B2(I2i2j42 — 2Ioi41,2j41 + Loiqo,2j) = 2j+1 ) 2j+1 o
(1 =2(B1 + B2)) 2i41,2j+1 3) 2020 @ O ] O 2i+20 O ;i ®@ O
. e 11 22
~ One way to guarantee that _th|s .COI’ldItIOI’l is locally truez+a00 © O O 2440 O © O
is to assume that local approximations of the second order
derivatives along the two perpendicular directio(}ﬁzi’% —  Fig. 2. At each step (here it is shown the first), the FCBI atbor fills the

) ] o D, ¥ o ) ] N divi central pixel (black) with the average of the two neighbarghe direction
2l9it1,25+1+12i,25)s (T2i25 42— 212011 2541+ Taiy2,25) divided of lowest second order derivativd1§ or Is). I11 and Izo are estimated

by the local intensityls; ;121 are constant. If we assumeysing for each one the 8 valued neighboring pixels (eviaeediwith different
also that the local gain is nulB({ + 52 = 1/2), we can impose colors).
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Interpolated values are then modified in an iterative prockr our experiments we found more effective the addition
dure trying to minimize an "energy” function. This functionof another energy term enhancing the absolute value of the
is obtained by adding a contribution for each interpolatesecond order derivatives:
pixel, depending on the local continuity of the second order
ger|yat|v§as and on ot.her quantities that are minima when Uu(2i+1,2j +1) = ©)

esired image properties are reached.

The sum of these pixel components should be minimized —(M11(20 4+ 1,25 + 1)| + [I22(20 + 1,25 + 1))

globally by varying the interpolated pixel values. It is@le  Thg term creates sharper images, but can introduce astjfac
that the computational cost of the procedure could be high, jis weight should be limited. Another term we tested to
We apply, however, a greedy strategy just iterating thelloGqyce artifacts is related to isophotes (i.e. isolevelesir

minimization of each pixel term. Being the initial pixel val smoothing. This is derived from [12], where an iterative

guess obtained with FCBI reasonable, the procedure leadsyhote smoothing method is presented, based on a local for
quickly to a local minimum that appears to be reasonable fggfined as

our task.
We said that the main energy term defined for each interpo-
lated pixel should be minimized by small changes in secodd!) =

order derivatives. For the first interpolation step (filliggps (i, §)Ia9(i, 7) —20(3, 5o, j)1o(4, §) +T11(3, 5 PIo(i, 5)
in the enlarged grid at location(®: + 1,25 + 1)), we defined - I(i,§)2 + I5(i, 5)2
this term as: with 11, Iso, I12, I1, I being local approximations of first and
second order directional derivatives. The related enezgy t
U.(2i+1,2j+1) = (5) Wwe applied is:
wi([(111 (20 + 1,25 +1) — [11(2i + 2,25 4 2))| +
|(I22(20 + 1,25 + 1) — I22(2i + 2,25 + 2))|) + Ui(2i + 1,25 + 1) = f(I)|2i+1,2j+11(20 + 1,25 + 1) (10)
wa(|(L11(20 + 1,25 + 1) — [11(20 + 2,25))[ + with I, I,» computed as before and
|(I22(21+%72] +1) *[22(2Z+?727))|) I5(2i+ 1,2 +1) = (11)
w3(|(11'1(2z L2+ 1) - 11’1(2127 2j +2))| + 0.5(I(2i +1,2j — 1) + I(2i +1,2j +3) —
|(122(2i + 1,25 + 1) — I>2(24, 25 + 2))|) + I(2i— 1,2 + 1) — I(2i + 3,25 + 1))
wy(|(I11(26 + 1,25 + 1) — 111(24, 25))| +
|(I22(2i + 1,2j + 1) — I22(24, 2j))]) (6)

L(20+1,2j+1) = (12)

where I, I5> are local approximations of second order o ) )
0.5(1(24,25) — I(2i + 2,25 + 2))

directional derivatives, computed as:

I1(2i+ 1,2 +1) = (7) (204 1,2+ 1) = (13)
(20 —1,2j = 1)+ 1(20 + 3,2j +3) —2I(2i + 1,25 + 1) 0.5(1(2i,25 +2) — I(2i + 2,25))

Actually this term has a very small influence in improving
Ion(2i 4 1,2j +1) = ®8) the perceived and measured image quality. ' '
) ) _ ) _ ) The complete energy function for each pixel location
I(2i = 1,2j+3) + 1(2i +3,2j = 1) = 21(2i + 1,2j + 1) (24 41,25 + 1), sum of the "curvature continuity”, "curva-

This energy term sums local directional changes of secolff€ €nhancement” and "isophote smoothing” terms becomes

order derivatives. Weights; are set to 1 when the first ordertherefore:

derivative in the corresponding direction is not largemttza

thre;hc(;ld Th andthto 0 ptherv\;ise. Ir:j'this \t{vaytsmoc;:]hing is U(2i+1,2 + 1) = alUu(2i + 1,25 + 1)+

avoided when there is a strong discontinuity in the image . ‘ . )

intensity. Assuming that the Iocgl variation ofythe grayellevg DU 20+ 1,2 + 1) +cli(2i + 1,27 +1)  (14)

is small, second order derivatives can also be considered atJsing this pixel energy, the first step of the iterative in-

approximation of the intensity profiles curvature. This iByw terpolation correction (adjusting pixel values with twodod

we call this term a "curvature smoothing” term, and definedidexes) is finally implemented as a simple greedy minimiza-

the algorithm "Iterative Curvature Based InterpolatiolCBl). tion as follows: after the placement of the original pixets a
The optimization procedure minimizing the sum of the cutecations(2i, 2j) and the insertion of rough interpolated ones

vature smoothing terms is really effective in removingfadis, at locations(2: + 1,25 + 1), we compute, for each new pixel,

but tends to create oversmoothed image. The smoothing effée energy functiorU/(2: + 1,25 + 1) and the two modified

can be only slightly reduced by replacing the second ordenergiesU*(2i + 1,25 + 1) andU~(2i + 1,25 + 1), i.e. the

derivative estimation with the actual directional curvatu energy values obtained by adding or subtracting a smalkvalu
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the same factor with different methods (see Figures 4,5N-Ho
ever, we also performed both subjective and objective tests
in order to compare quantitatively the quality of the images
created with different methods and the related computation
cost.

A. Objective test

The objective test compares images obtained by down-
sampling the original images and then enlarging them with
different methods, with reference images obtained justrdow
sampling the original ones to the corresponding size. We
performed this test on images converted to 8 bit grayscale,
Fig. 3. Selected images from the test database. being the use of all three color channel not relevant to this
test.

. ) ) . . We created 28 x 128 and256 x 256 subsampled version of

0 to the local 'mage valud (2i + 1,25 + 1).' The mtengty the original images and the downsampled reference images.
value_ corres_pondlng to th_e _Iower_ energy is then a.ss'gnEdESﬁferent classes of algorithms required different refexe

the pixel. This procedure is iteratively repeated until uen images to compensate the slightly different zoom factors

of the modified pixels at the current iteration is lower than 8nd translation created by the algorithms. Methods destrib
fixed threshold, or the maximum number of iterations has beﬁp Section Il do not enlarge exactly the.images Dy/dx

reached. The numbgr of |terat|ons.can b? qlso fixed 'n.orderfé%tors, being the exact enlargement at each step equal to
adapt the computational complexity to timing constraimts. (2width — 1) /width horizontally and(2height — 1)/height
our implementation we change the valuedofrom an initial vertically

value of4 to the unit value during the iteration cycle in order | any case, we applied the exact or approximate

to speed up the convergenag.b andc and 7" were chosen enlargement to the56 x 256 images and thd x enlargement

by trial a”?' error in Qrder to maximize the perceived a% the 128 x 128 ones. Finally we measured the differences
measured image quality. Note that the valuec@nd T are between the upscaled images and the reference ones by

not critical (if 7' = I'na, andc = 0) results are only slightly o 5y4ting the Peak Signal to Noise Ratio, defined as:
worse. If too large, the isophote smoothing term can intcedu

a bit of false contouring, flattening texture. The ratio betw PSNR = 20log;y — If\/[AXPIX (15)

a and b determines a tradeoff between edge sharpness and Dics 2y Tup (1) = Lorig (i:9))?

artifacts removal. Actually, it may be also a reasonabléoopt (WH)

to use only the derivative-based constraint and to enhancevherel,, (s, j) is the upscaled subsampled imagdg., the

contrast in post processing. original one,W and H the image dimensions and AX PI X
After the second hole-filling step (assigning values tolal t the end scale value of the pixel intensity. The results for a

remaining empty pixels), the iterative procedure is repet@it  2x enlargement 056 x 256 images andtx enlargement of

a similar way, just replacing the diagonal derivatives ie th128 x 128 images are summarized in Table I.

energy terms with horizontal and vertical ones and iteeltiv.  Algorithms tested are bicubic interpolation, and well kmow

modifying only the values of the newly added pixels. edge based methods, i.e. the technique described in [4], an
iterative methods based on isophotes smoothing derived fro
VI. EXPERIMENTAL RESULTS [12], NEDI [11], the "well conditioned” NEDI described in

We tested the algorithms proposed on a database S#ction IV, the improved NEDI described in [1], and the FCBI
25 natural images selected from the morgueFile omand ICBI methods here described.
line archive (http://morguefile.com). All images are sub- The choice of these algorithms (e.g NEDI-like and fast
ject to the license agreement available at the web pagége directed methods) is related to the focus of the pa-
http://morguefile.com/archive/terms.php. For our experital per (showing a fast algorithm related with the NEDI con-
needs, we used images representing various objects, animsttaint). Any other method could, however, be tested with
flowers and buildings. These categories were chosen becailse same experimental setup presented here: all the images
they provide a wide range of colors and natural texturessed and the evaluation scripts are available at the web site
Selected files were RGB color images with a depth of eighttp://www.andreagiachetti.it/icbi.
bits per channel. In all the previous equations we consitlere Bicubic interpolation was obtained with the Matlab builtin
grayscale images; color images can be enlarged in the sdomection, the original NEDI Matlab code was kindly provided
way by repeating the procedures independently on each calsrby prof. Xin Li, Chen’s method was implemented by us in
channel or by computing interpolation coefficients on thilatlab following the the description given in the cited pape
image brightness and using them also for the other channéili,the others algorithms have been coded in Matlab for this
reducing the computational cost and avoiding color ari$fac test.

The high quality of the images obtained with the new The values obtained with the well conditioned NEDI
method can be clearly seen comparing the images upscaledquafEDI) method are inserted just to show that the algorithm
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Fig. 4. The enlargement of a natural image using pixel reptingin this case by & x factor), creates obviously a pixelized result (see detted). Bicubic

interpolation (detail in B) removes this effect, but createglent jagged artifacts (see near the arrow tip). Teclesdike NEDI (C,D) provide better results
(even if at the cost of a high computational complexity), bilt steate evident artifacts due to effect of edge discaritias in the window used to estimate
the covariance (see near the arrow tip). Images in C and Dathars identical, are obtained with the original NEDI ea@ist and the modified constraint

introduced in Section 3. The result obtained with the ICRht@que (E) does not present relevant artifacts.

Fig. 5. Comparison of different "edge directed” interpatatimethods. A: Image detail enlargettq) with pixel replication. B: the same detail enlarged by
a 4x factor with Chen’s edge directed method. C: the same detadrged with NEDI method. D: the same enlargement obtained withfami curvature

based interpolation method (FCBI). E: the same enlargemeatnaat with our iterative curvature based iterative intéafon method (ICBI).

ICBI FCBI iINEDI wNEDI NEDI Chen Iso. Bic. NN
2x dB| 31.07 29.82 30.64 29.71 29.71 29.50 29.47 30.36 2§

UPSCALED BY APPROXIMATELY 2X AND 4X FACTORS WITH REFERENCE T7200 2.0 GHz CPU.

IMAGES. THE ICBI METHOD PROVIDES THE BEST RESULTS

13out if we consider the computation time (Table Il) the new
4% dB| 25.33 24.46 25.18 24.30 24.30 24.19 24.11 2491 2343method appears clearly superior. Computation times regort

TABLE | in tables are obtained with non optimized Matlab implemen-
PEAK SIGNAL TO NOISE RATIOS(DB) OBTAINED BY COMPARING IMAGES  tations on a Dell XPS M1210 laptop with an Intel Core2 Duo

ICBI FCBI INEDI wNEDI NEDI Chen
2x time(s)| 1291 017 31244 14501 22164 0.1
i L . : 4x time(s)| 13.30 0.18 37283 189.97 293.36 0.1
indeed produces similar images with a lower computational
TABLE I

cost (see Table II).

The iterative method proposed provides the best results. Th
accuracy is not much higher than iINEDI féx enlargement,

AVERAGE COMPUTATION TIMES OBTAINED WITH NON-OPTIMIZED
MATLAB IMPLEMENTATIONS OF THE ALGORITHMS.
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The iterative nature of the ICBI algorithm can be also usday the number of images multiplied by the number of subjects)
to adapt image quality to the available hardware performancare reported in Figure 6.
In fact, by limiting the number of iterations we can obtairodo

quality and artifact-free images with a reduced computtio 5
cost. Table Ill shows the image quality (PSNR) and time 4% o
performances obtained with the ICBI algorithm varying the 3_:
maximum number of iterations. With just 5 iterations it is 3
possible to have a PSNR close to the best one obtained. 25
With more than 20 iterations the difference in PSNR becomes 2

o 174 L 1,66
negligible. 1-: 4
2 it 5it. 10it. 20it. 30 it 25 .
2% time (s)| 1.57 3.69 7.16 1291 20.7 0

2% PSNR 30.62 30.93 31.05 31.07 31.0 Bicubic Chen's FCBI  Orig. NEDI  iNEDI ICBI
4x time (s)] 1.91 443 7.28 1330 19.3
4x PSNR | 24.92 2523 2531 2533 253

W OO

Fig. 6.  Average qualitative scores obtained by a group of &Bpfe
comparing pairs of differently enlarged X) images and selecting for each

TABLE Il pair the preferred one. The score of each algorithm is theageenumber of
BY FIXING A NUMBER OF ITERATIONS WITH THE ICBI ALGORITHM IT IS preferences of the algorithm on the 5 comparisons made by essbrpon
POSSIBLE TO MEET TIMING CONSTRAINTS AND STILL OBTAIN GOOD each image.

RESULTS FIVE ITERATIONS ARE SUFFICIENT TO OBTAIN GOOD IMAGES

We can observe some differences between the results ob-

ki h I Its. i be al tained and the results of the objective test. FCBI is now
Looking at the quantitative results, it must be also CorE)'referred to bicubic interpolation, even if this one obgain

sidered that Some of th_e methods_ he_re tested are paramglefer results in the objective test. The reason is that-edge
dependent and it is possible to obtain different resultagim® ;o010 interpolation methods are able to remove jagged

parametgrs’ values. We t.ried to optimize the_results on lor A tifacts that strongly affect bicubic interpolation.
the algor!thms tested tumng pararr_weters by trial and eao=( The low number of subjects limits the statistical relevance
different image set), but slightly different results coslarely of the test, but it is clear that images enlarged with ICBI and

be obtained with the different met_ho_d_s. ) iINEDI appear evidently of higher quality than those interpo
It should also be noted that optimizing methods in order igaq with other methods compared. ICBI is usually pretérre
achieve maximum PSNR is not necessarily the best thing dg.e ¢ when the image is not characterized by high frequency
do to have very good images, being PSNR not necessaglyy res (causing the former method to create artifacts lik
correspondlng to visually perceived quality. Fo'r example,ose visible in Fig 5 C) and the user judgement of “high
using ICBI we found that the PSNR values can be increased iy, iy is more related to sharpness than on artifact reahov
adding more weight to the sharpening term, but at the cost-fiig is somehow expected, we have, in fact, shown that the
creating visible artifacts. We tested also differentimagelity 1,5 methods are based on strongly related constraints. INED
measurements proposed in literature (e.g. those used In [ g hiect to artifacts when the second order derivatives ar

or the mean structural similarity [19]) to try to have a bEt'[qwot continuous due to the assumption of covariance congtanc
correlation between visible artifacts and quality measbre ;, 5 large area.

we did not see relevant differences in algorithm ranking or
in visual artifacts characterization. We preferred therefto

test the perceived quality by making experiments with huma% Image sharpness and artifacts
subjects. Subjective tests reveals that quality scores should be ana-

lyzed with care, being the perception of image quality eslat
L to image contents and to different factors that may be weiht
B. Subjective test differently according to the user's needs. It has been shown
In order to compare perceived image quality, we have takésee [18]) that the decrease in the perceived "image qUagity
a subset of 10 of the previously described RGB images arelated to a linear combination of blurriness and artifagith
enlarged them by ax factor with six different algorithms higher weight given to blurriness (most people seem to prefe
(NEDI, iNEDI, bicubic, Chen’s, FCBI, ICBI). We then askedan increase in sharpness rather than a similarly noticeable
a group of 12 people to compare them, in order to select thgifact removal). This is probably one of the reasons why,
method providing the best average "perceived quality”. Afbr the enlargement of high resolution images for printing
the different possible couples of corresponding imageswearnhancement, photographers often use software that does no
presented (in random order) to the subjects involved in tloeeate natural detail or maximize similarity between high
test, who were asked to choose the preferred image for eachesfolution patches and low resolution upsampled ones. De-
them. An LCD display was used to represent image couplesfatilt options of professional photo zooming software usual
full resolution on a screen surface of abaitx 17 centimeters. strongly enhance contrast and straight lines, locallyeitatty
The sum of the successful comparisons for each interpotaxture. Of course, this is not necessarily a good choicksif t
tion method was then taken as the quality score of the methexdarged bitmap should preserve detail recognition, seali
itself. The average scores (total number of preferencedativ and a correct depth perception from defocus.
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Learning based methods are also able to reconstruct sharp
detail at the risk of creating "hallucinated” objects, arn t

perceived quality may be good or bad according to the fact Image loading J » Oddpixels
that the detail is realistic or not in that position. \f\'w

It seems, therefore, a reasonable statement to say that ther L SO
is not an interpolation method that is ideal in any conditibe Device memory Y
choice of the algorithm is largely dependent on the appéicat allocation 1% derivative

The ICBI method proposed here is, in our opinion extremely estimation kernel

i

effective in removing sampling artifacts, even if it does no 4 .
enhance strongly lines and contrasted edges and resubiampp _Enlarged image L Srieneean
a bit oversmoothed. If the user wants to obtain images with initialization kernel *! pptimization

less defocusing and enhanced contours, the final result can k \kejﬁ'l/)
be, however, pos_t—processed with .sharpe.ning filters _tdrobta "‘ ' ¥ synchronization
more contrasted image or clearer lines, without creatixiyite

appearing too artificial or “painted” (see Figure 7). ter< N2 Y2 Empty pixels

The other good feature of the method here proposed is the filling kernel

low computational complexity that allowed us to obtain real
time performances with a GPU implementation, as we will see

in the next section. Image 2" derivative
save/display estimation kernel

\
i

 J synchronization

i

VII. CUDA IMPLEMENTATION AND REAL TIME y Synchrenization

INTERPOLATION
. - . 2™ optimization
CUDA is a technology developed by nVidia allowing pro- e

grammers to write code that can be uploaded and executed
in recent nVidia graphics cards, exploiting their massivel
paraliel arChit?Ctur? in order to obtain a relevant reahycti jg. 8. Flow chart representing the execution of the CUDA IQfple-
of th? computing time. C++ developers can write partmu'%g.nta.tion. Ellipses repr%sent kel%els where matrices aregsed in pe{)rallel
functions called "kernels” that can be called from the hosteating multiple threads each one processing a separate. blo
and executed on the CUDA device simultaneously by many
threads in parallel. ) - ) )
Using this technology, we implemented the ICBI algorithfNNED! method can be slightly modified removing the necessity
by creating several CUDA kernels corresponding to the diffef solving ill conditioned overconstrained systems of etpures
ent steps of the algorithm. In this way computation perfarmeénd obtaining the same image quality. Then we showed how
in different blocks of the image can be executed in parallér,‘e modified NEDI constraint is related to the constramldyse
while the execution of the different steps is synchronizee( in our new ICBI (lterative Curvature Based Interpolation)
Figure 8). A first kernel creates the high resolution imagenfr technique. This technl_que_ uses malnly the assumption that
the low resolution one, a second fills odd pixels with the FCBPe second order derivatives of the image brightness are
method, then two kernels computing derivatives and cdngct conti_nuous along the interpoIaFion dire_ctiong and is .able t
the interpolated values are executed repeatedly. The decBRt@in very good results, especially for its ability of rermy
interpolation step is implemented in the same way, with a firdrtifacts without creating "artificial” detail, as proved lour
kernel inserting new pixel values, and the iterative caltraf Objective and subjective tests. The new technique, based on
two kernels computing derivatives and locally changing ti 9reedy minimization of an energy function defined at the
interpolated values optimizing the energy function. ipterpolated pixel locations, is not computationally exgige o
With this implementation, we obtained tHex enlargement likeé example based methods or the NEDI procedure and it is
of 128 x 128 color images in 16.2 ms on average, correspon8asily parallelizable. This allowed us to implement, eipig
ing to a ideal frame rate of 62 frames per second and tHt¢ nVidia CUDA Technology, a version of the algorithm able
2x enlargement oR56 x 256 images in 12.3ms on averageto work at interactive frame rates on commodity graphics
using a nVidia GeForce GTX280 graphic card (240 cores) aR@rds
obtaining the same image quality of the Matlab and C version

i

of the code. ACKNOWLEDGMENTS
This example implementation clearly shows the possibility Special thanks to Enrico Gobbetti and 8dsntonio Iglesias
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VIIl. DI1SCUSSION

In this paper we discussed several issues related to thﬁ: _ _ , _
blem of creating hiah quality upscaled imades from |0VJ1 N. Asuni and A. Giachetti. Accuracy improvements and adié removal
pro g nigh q y up g in edge based image interpolation. Rnoc. 3rd Int. Conf. Computer

resolution original data. First we showed that the well know  \ision Theory and Applications (VISAPP'08), 2008.
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Fig. 7. 4x upscaling of a 4 Megapixel image (not downsampled). A: Nearegthbor enlargement showing a small detail at the origirsdltgion. B: Same
detail enlarged with ICBI: pixelization is removed withoutating evident jaggies or artifacts, but the image appeassmoothed. C: The same upscaled
detail in B after a simple post-processing (selective smagtlaind sharpening) enhancing the perceived quality of tmeepr image.

(2]

(3]

(4]

(5]
(6]

(7]
(8]

El

[10]

(1]

[12]

[13]
[14]

[15]

[16]
[17]

(18]

[29]

C. B. Atkins, C. A. Bouman, and J. P. Allebach. Optimal imagelisg
using pixel classification. I#roc. |[EEE Int. Conf. Im. Proc., volume 3,
pages 864-867, 2001.

S. Battiato, G. Gallo, and F. Stanco. A locally-adaptizeoming
algorithm for digital images.Image and Vision Computing, 20:805—
812, 2002.

M.J. Chen, C.H. Huang, and W.L. Lee. A fast edge-orieragbrithm
for image interpolation. Image and Vision Computing, 23:791-798,
2005.

R. Fattal. Image upsampling via imposed edge statisticABCM
Transactions on Graphics, 26(3):95, 2007.

W.T. Freeman, T.R. Jones, and E.C. Pasztor. Example-bsseelr-
resolution. IEEE Computer Graphics and Applications, 22(2):56-65,
2002.

A. Giachetti and N. Asuni. Fast artifact free image intgtion. In
Proc. BMVC 2008, 2008.

D. Glasner, S. Bagon, and Michal Irani. Super-resohufimm a single
image. Inproc. 12th International Conference on Computer Mision,
pages 349-356. IEEE, 2009.

Kenji Kamimura, Norimichi Tsumura, Toshiya Nakaguchi, Yaic
Miyake, and Hideto Motomura. Video super-resolution usiegtdn
substitution. INACM SIGGRAPH 2007 posters, page 63, New York,
NY, USA, 2007. ACM.

K. I. Kim and Y. Kwon. Example-based learning for singfeage super-
resolution. InProceedings of the 30th DAGM symp. on Patt. Rec., pages
456-465, Berlin, Heidelberg, 2008. Springer-Verlag.

X. Liand M. T. Orchard. New edge-directed interpolatiéEEE Trans.
on Image Proc., 10:1521-1527, 2001.

B.S. Morse and D. Schwartzwald. Image magnification usavgl-set
reconstruction. InProc. |IEEE Conf. Comp. Ms. Patt. Rec., volume 3,
pages 333-340, 2001.

D. Su and P. Willis. Image interpolation by pixel leveltdalependent
triangulation. Computer Graphics Forum, 23, 2004.

J. Sun, Z.B. Xu, and H.Y. Shum. Image super-resolutiongigiradient
profile prior. In CVPR08, pages 1-8, 2008.

YW Tai, WS Tong, and CK Tang. Perceptually-inspired aritjes
directed color image super-resolution. Rroc.|EEE Conference on
Comp. Vision and Patt. Recognition, 2006.

S. Thurnhofer and S.K. Mitra. Edge-enhanced image zogm@ptical
Engineering, 35:1862—-1870, 1996.

J.D. van Ouwerkerk. Image super-resolution suniegage and Vision
Computing, 24:1039-1052, 2006.

E. Vansteenkiste, D.Van der Weken, W. Philips, and Ké&re. Eval-
uation of the perceptual performance of fuzzy image quality Suess.
In proc. KES, 10th International Conference on Knowledge-Based &
Intelligent Information & Engineering Systems, pages 623-630, 2006.
Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. fea
quality assessment: From error visibility to structural smiiy. |EEE
Transactions on Image Processing, 13:600-612, 2004.

PLACE
PHOTO
HERE

Andrea Giachetti received his Master’s degree in

Physics in 1993 and his Ph.D. degree in Physics in
1997 from the University of Genova, Italy. From

Febraury 1997 to January 2004, he was Expert
Researcher at CRS4 (Center for Advanced Studies,
Research and Development, Sardinia), where he
became head of the Medical Image Processing group
and was involved in several EU-funded research
projects. From January 2004 to November 2006 he
was Assistant Professor at the the University of
Cagliari. Since November 2006 he has been Asso-

ciate Professor at the Department of Computer Science of theekdity of
Verona. His research activity is mainly focused on computgion, computer
graphics, medical image processing and shape analysis.

PLACE
PHOTO
HERE

Nicola Asuni received his Master's degree (Laurea)
in Computer Science from the University of Cagliari
in 2007. He is the founder and president of Tec-
nick.com S.r.l., a company providing IT consulting,
implementation services and custom software devel-
opment. He is author of several award-winning open
source software projects.



