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Figure 1: A,B: volume rendering of the area projection transform computed at two different scales on an ant model is high near
centers of radial symmetry at the selected scales. The joint multiscale mapcomputed on a wide radius range can simultaneously
detect centers of symmetry at variable scales (C). The behavior of these maps is qualitatively unchanged removing randomly
50%of the faces (D) or, thanks to adaptive smoothing (see text), adding relevant noise to vertex positions (E).

Abstract
We present a novel method to characterize 3D surfaces through the computation of a function called (multiscale)
area projection transform, measuring the likelihood of points in the 3D spaceto be center of radial symmetry at
selected scales (radii). The function is derived through a simple geometric framework based on parallel surfaces
and can be easily computed on triangulated meshes. It measures locally the area of the surface well approxi-
mated by a sphere of radius R centered in the point and can be normalizedin order to obtain a scale invariant
radial symmetry enhancement transform. This transform can thereforebe used to detect and characterize salient
regions like approximately spherical and approximately cylindrical surface parts and, being robust against holes
and missing parts, it is suitable for real world applications e.g. anatomical features detection. Furthermore, its
histograms can be effectively used to build a global shape descriptor that provides very good results in shape
retrieval experiments.

Categories and Subject Descriptors(according to ACM CCS): I.2.10 [Computer Graphics]: Vision and Scene
Understanding—Shape

1. Introduction
The ability of modern technologies like 3D laser or fringe-
based scanners, dense stereo, TOF cameras to provide sur-
face data of 3D objects, usually stored as triangulated
meshes, creates the necessity of finding good methods to
process this kind of data, capturing and compactly encoding
the relevant information about the modelled objects. A lot
of research work has therefore been performed on mesh seg-

mentation, skeletonization, shape recognition, salient points
detection. The search for locally symmetric parts in a shape
plays a relevant role in this context. Biological and archi-
tectural objects are, in fact, characterized by planar and ra-
dially symmetrical parts (e.g. spheres, cylinders) and their
detection and description is therefore useful for a variety of
shape analysis tasks. In this paper we present a new spa-
tial transform calledmultiscale area projection transform
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(MAPT)measuring the local likelihood of points in 3D space
to be centers of radial symmetry at selected scales. The trans-
form can be easily estimated on triangulated meshes and can
be used not only to detect salient points and to reconstruct
centerlines of tubular shape parts, but also to characterize
globally the shape: its histograms are able to capture invari-
ant features of rigid and articulated bodies and can be used
for shape retrieval, comparing very well with state of the art
techniques.

2. Related work

Several approaches have been proposed to detect and de-
scribe salient points or geometrical location characterizing
3D shapes. Most of them are designed to find surface fea-
tures through curvature analysis at different scales and to
describe them with feature vectors depending on the local
neighborhood. A curvature-base notion of mesh saliency has
been proposed in [LVJ05] and many papers presented re-
lated methods to detect and describe salient points on sur-
faces [SF06,CCFM08]. Shape descriptors can be purely lo-
cal [JH99, MFK∗10] or add global information to obtain a
more reliable point characterization [KPNK03]. Local and
global descriptors can then be used for shape retrieval ap-
plications with approaches like bag of features or simi-
lar ones [BBC∗10, LGB∗11]. Global and local information
is intrinsically encoded in features derived by heat diffu-
sion analysis, like theheat kernel signature[SOG09] that
has shown effective performances for 3D shape matching
[BBOG11,BBC∗10]. The heat kernel approach has been ap-
plied also to volumetric analysis [RBBK10], obtaining sig-
natures related to a geometrical parameter called scalar cur-
vature, computed on a voxelized grid.

Another popular method to characterize salient locations
of 3D shapes is using the 1D curve skeleton [CSM07], a sub-
set of the medial axis [Blu67] that, thank to its 1D struc-
ture, captures well the tree-like structure of many real ob-
jects and has been used in shape recognition and matching
tasks [SSGD03]. The curve skeleton, however, is not well
defined where the shape is not approximately tubular and
different algorithms used to compute it give different results
and are often sensitive to noise and topological changes.

The use of symmetry to characterize locally and glob-
ally shapes is also a relevant research topic. In [TZCO09],
rotational symmetry is applied for a robust skeletonization
approach and also theshape diameter functionproposed
in [SSCO08] is in some sense related to radial symmetry.
Solomon et al. [SBCBG11] employed discreteapproximate
killing vector fields(AKVFs) to discover intrinsic primi-
tives, e.g. shape regions with approximate intrinsic symme-
try. Lipman et al. [LCDF10] introduced thesymmetry fac-
tored embedding(SFE) and thesymmetry factored distance
(SFD) to analyze and represent symmetries in point sets. Mi-
tra et al [MGP06] proposed a nice framework to discover
discrete symmetries at different scales through a clustering

procedure in transform space. Pauly et al. [PMW∗08] pre-
sented an algorithm to search for repeated structures in com-
plex shapes using generative models. The use of symme-
try for shape matching has been proposed by Kazhdan et
al. [KFR04], using for this task rotational symmetry around
axes passing trough the center of mass and by Podolak et
al. [PSG∗06] that introduced aplanar-reflective symmetry
transformcapturing the degree of symmetry with respect to
reflection through all planes in space.

The method proposed here is rather different from the
cited ones, even if linked to some of them (it detects rota-
tional symmetry, can be used to evaluate curve skeletons,
can be used to create a symmetry based descriptor for shape
matching). It is based on the computation of a spatial trans-
form encoding the local degree of radial symmetry (in a se-
lected scale range) and on the use of a saliency notion re-
lated to high symmetry. This saliency notion is often used in
image analysis, being radial symmetry related with fixation
points of the human visual system even better than high con-
trast [KS09]. It is not surprising, therefore, that approaches
sharing the basic idea of our method have been proposed
in image processing to detect salient points and circular ob-
jects. The one closer to our technique is thefast radial sym-
metry [LZ03], also creating a multiscale transform project-
ing signal perpendicularly from edges at a set of distances.
Apart from the changed domain and dimensionality, our ap-
proach is, however, different for two important reasons:

• the transform definition is purely geometric and derives
from an original theoretical formulation, so that it does not
rely on particular discretizations or data structures. This
formulation allowed also us link the APT to the medial
axis transform (Sec.4.2);

• it computes a meaningful quantitative value, i.e. the
amount of converging symmetric surface area scaled by
the radius. This aspect makes the map useful not only for
the detection of centers of symmetry, but also for recogni-
tion and matching, characterizing with peculiar quantita-
tive values also non symmetric shapes.

The following sections will define the transform and discuss
its properties and implementation issues.

3. Area Projection Transform
Our basic idea is to compute from input surfaces a spa-
tial function that is maximal near centers of approximately
spherical surfaces with a selected radiusRand along center-
lines of tubular structures with approximately circular sec-
tion of radiusR, so that it can be used to locate salient points
and regions characterized by radial symmetry. This result
can be obtained by projecting surface points along the lo-
cal normal vector~n at distanceR. The likelihood of a point~x
to be center of a radial symmetry can then be assumed to be
proportional to the number of points of the original surfaceS
that are projected in a neighborhood of~x or, in other words,
to the area of the original surface projected in that neighbor-
hood. To compute this point density for a generic surfaceSin
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Figure 2: Basic idea of the area projection transform: we
compute the parallel surface at distance R (only in a selected
direction or both directions) and we compute the transform
in a point~x as the area of the original surface generating
the part of the parallel one falling inside a sphere of radius
σ centered in~x.

the 3D space, we consider the transformTR(S,~n), creating a
correspondence betweenSand its "parallel surface" [Win52]
at the distanceR on a selected side (moving each point ofS
along the normal direction~n, Fig.2). For each point~x in R

3,
a sphere with radiusσ centered in~x includes a subset of the
surfaceTR(S,~n), that is kσ(~x) ⊂ TR(S,~n); we define "area
projection transform"APT(~x,S,R,σ) the area of the subset
of S having its parallel surface inside the sphere:

APT(~x,S,R,σ) = Area(T−1
R (kσ(~x)⊂ TR(S,~n))) (1)

If we want to characterize both the sides of the surface we
can compute also the contribution of the other parallel sur-
face at distanceR. i.e.T−R(S,~n), possibly with opposite sign
to separate the different kinds of features.TR is well defined
for continuous surfaces (properties of parallel surfaces can
be found in [Win52]), and this is not always the case of data
captured by scanners or reconstructed from volumetric grids.
However we can easily compute the APT as the sum of the
contributions of all the continuous patches acquired. If we
can assign a common orientation to the patches we can com-
pute the transform only for a selected orientation (e.g. inside
the object), otherwise we can compute the APT as a sum of
the contributions of the two sides.

It is easy to understand why this transform captures radial
symmetry: a spherical surface with radiusR projects all its
surface on a single point and the APT is non negligible only
within a distanceσ from this point (see Fig.3). A similar
reasoning can be done for cylindrical surfaces. Radial sym-
metries will determine maximal regions for the APT and the
value ofσ determines the deviation from a perfect symme-
try we want to tolerate when detecting it. Furthermore, ex-
act values of the expected maxima of the APT in the case

Figure 3: Left: The internal parallel surface at distance R of
a sphere S with radius R collapses in the central point. The
maximal value of the APT computed exactly at scale R is the
area of the entire spherical surface, i.e.4πR2. Right: for a
cylindrical surface of radius R the internal parallel surface
at distance R collapses into a line. The APT computed at
scale R has a maximal value along that line equal to the
area of the green part of the cylinder,4πRσ.

of spheres or cylinders can be computed: if the surface S is a
sphere with radius R and we compute the APT with the same
R, the expected value near the center is the area of the spher-
ical surface 4πR2, independently on the choice ofσ (Fig. 3).
If we make the value ofσ tend to zero, we can consider

ρAP(~x,S,R) = lim
σ→0

APT(~x,S,R,σ)
(4/3)πσ3 (2)

a density function inR3 measuring the amount of points of
the original surface mapped in each infinitesimal region of
the parallel surface. We can, in this way, reinterpret the APT
as a kernel density estimate ofρAP with a unitary spherical
kernel of sizeσ that could, in principle replaced by an arbi-
trary kernel in a generalized APT definition.

4. Handling multiple scales

When we search for radial symmetry we do not usually want
to do it for a fixedR, but we want to find features at differ-
ent scales. If we consider the radiusRas a fourth variable in
previous definitions, we obtain immediately multiscale ver-
sions ofAPT and ρAP. However, in order to compare the
values at different radii and correctly characterize the scale
of the dominating symmetries, a good idea is to define a mul-
tiscale area projection transform (MAPT) with the following
two properties:
i) a perfect sphere creates a signal with values in its center
independent on its radius;
ii) two surfaces differing for a scaling transform have the
same maximum.
These properties are obtained with the following definition:

MAPT(x,y,z,R,S) = α(R) APT(x,y,z,S,R,σ(R)) (3)

whereα(R) = 1/4πR2 andσ(R) = c ·R (0< c< 1).

The coefficientα makes, in fact, a perfect sphere create
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Figure 4: While the presence of symmetric surface parts with high curvature is detected by APT(~x,R0) with R0 close to the
radius of the locally tangent sphere (A), small structures may create noise in APT maps computed at larger radii (e.g. R1), as
many surface elements are projected far from the expected symmetry center (B). If, however, we compute the map at larger radii
using a radially dependent smoothed normal~n(R) (obtained, for example, averaging vectors in a region proportional to R2),
and then weight the projected area elements by the scalar product of local and averaged normal, the problem is removed and
APT(R) measures the surface of the sphere(circle) approximating the original data (C). Another simple method to reduce the
problem consists of iteratively smoothing the surface at increasing R to remove structures with high curvature (D).

a central value equal to 1 independently on the radius. The
choice forσ makes a shape scaled by a factork produce a
MAPT maximum at scalekR equal to the maximum of the
original one at scaleR. The resulting MAPT characterizes
therefore the shape with values depending on the degree of
radial symmetry independently on the scale. We know also
that maximal value in center of perfect spheres should be
equal to 1, while cylindrical shapes, following the reason-
ing of Fig. 3, should be characterized by maxima equal to
2πR·2cR/4πR2 = c, still scale independent, but depending
on the kernel size. A search for similar salient symmetric
locations on input surfaces can be then performed on the
4-dimensional MAPT estimated for a reasonable range of
radii, and can be also performed with a joint multiscale ap-
proach, combining the maps computed at different scales
in an unique saliency function (joint multiscale APT). This
map can be defined as:

JMAPT(x,y,z) = maxR(MAPT(R)) (4)

and should still encode the main features related to the shape
symmetry, even if it is clearly less informative than the 4D
function. However, its use reduces the amount of memory
required, that can be huge if the discretization is fine. Note
that if we search for symmetric points on the JMAPT, in
order to be able to recover their scale, it is useful to create
an additional matrixSMAPT(x,y,z) storing the related scale
information, e.g. the radius corresponding to the maximum
of MAPT(x,y,z,R) at each spatial location.

4.1. Optimizing the behavior at different levels of detail

The above MAPT definition has a problem in the case we
search for symmetry with a large radius and the surface
presents a "texture" made of smaller structures. Consider the
2D sketch in Fig4: small circular (spherical) structures are
detected by projecting each segment length (triangle area)
at distanceR0 along edge (face) normals (Fig4 A), but the
same procedure is less effective forR= R1, even if the ker-

nel area is proportionally scaled (Fig4 B), due to the fact that
a lot of surface elements are projected along quite different
normal vectors. However, it is possible to modify the MAPT
definition in order to make it detect the symmetry of struc-
tures like that in Fig4 as approximately spherical. An ac-
curate solution consists of computing differently “smoothed
normals” for sampled surface points at different values of
radius, averaging local normals in a neighborhood with area
proportional to the squared radius (Fig4 C). We have just
to consider the normal vector in the formulaTR(S, ~n(R)) as
a function of the radius R. To avoid then overestimation of
the projected spherical part area we can then weight each
projected surface patch with the scalar product between this
smoothed normal and the local normal (Fig4 C). A compu-
tationally faster solution for the discretized case (see Sec.5)
consists of computing the transform sequentially at increas-
ing radii and at each increment of the scale smoothing the
surface (e.g. with a spatially controlled Laplacian operator)
in order to remove high curvature detail, so that when we
project at distanceR1 we don’t use the original surface, but
something like the smoothed one in Fig4 D.

4.2. MAPT and the medial axis transform

Our transform is also related to the medial axis of a sur-
face [Blu67], e.g. the locus of centers of spheres tangent to
it in at least two distinct points, widely applied in geomet-
rical processing. Actually the joint multiscale APT, defined
in Sec.4, when the kernel radius tends to zero, vanishes with
the exception of the points where there is an exact spherical
symmetry of a surface part. These points are clearly a subset
of the medial axis (centers of spheres tangent to the surface
in an infinity of points), where the limit values of the func-
tion give further information related to the spherical parts
area values. If we count the area elements projected into the
kernel volume and consider the set of points where in the
limit σ → 0 the number is greater than 1, we can obtain the
rest of the medial axis as a limit case from the JMAPT. Be-
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Figure 5: The medial axis of a cylinder includes also cones
at the extrema (A) and when a small spherical perturbation
is produced on it a complete line appears (C). This makes its
computation on discretized surfaces not stable (B,D, com-
puted with public code from [DS06]) The Joint MAPT is re-
lated to the medial axis (see text), but, weighting the area
approximately tangent to spheres, it is not high in non sym-
metrical regions near the bases of the cylinder (E) and,
adding the small spherical perturbation, only the center of
the sphere presents relevant values in addition to the axis.

ing possible to enrich the JMAPT with the associated scale,
we can actually obtain the complete MAT from it.

In some sense we can consider the JMAPT an approxi-
mated and volumetric version of the medial axis transform.
It is also a robust representation being not much changed by
small perturbations of the surface (while the medial axis is
completely changed by small bumps even far from them).
This fact can be understood looking at Fig.5: the ideal me-
dial axis estimated on a cylinder is a segment only far from
the bases, where it is transformed in two conic surfaces (A).
If a small perturbation is added, a new complete branch ap-
pears even if no tubular parts are present (C). Due to this low
stability, algorithms for its numerical estimation on meshes
provide noisy results (B,D). The ideal JMAPT for a cylin-
der should be maximal on the axis and decreasing around
it with a behavior depending on the selected parameters.
The JMAPT computed with our code on an approximately
cylindrical mesh has the expected appearance (E). After the
"spherical" perturbation, the JMAPT is relevant still on the
axis in the center of the spherical bump, but is low elsewhere
due to the negligible projected surface (F). The robustness
provided by the local weighting of the symmetric surfaces is
different from that provided by robust variants of the medial
axis. For example theλ-medial axis[CL05] is obtained re-
moving centers of spheres with radius lower than a threshold
and thescale axis transform[MGP10] creates medial sur-
faces at different scales by extracting medial axes on shapes
simplified by "multiplicative scaling" where radii of medial
balls are changed. Using the APT maps we can as well select

Figure 6: 2D sketch showing the methods implemented to
compute the the area projection transform with radius R. A:
Points on the surface are sampled regularly and projected
at distance R, with an associated original area contribution.
If this point cloud is stored in a k-D tree, APT(~x,R,σ) can
be computed by querying for the points within a distance R
from~x and summing the area contributions. B,C: a "count-
ing" approach to speedup the estimation of APT on a regular
grid: first each voxel is incremented of all the area contribu-
tions of the close projected points, then the obtained map is
convolved with a spherical kernel with radiusσ.

"medial representations" at different scales, but we have also
the relevance given by the projecting surface area. Our volu-
metric density cannot replace medial surface representations
having different nature and applications. However, the use
of the MAPT as importance and scale-selective weight for
medial axis branches could be investigated.

5. Discretization and implementation

In order to estimate APT for a polygonal meshM, given a
radiusR and a toleranceσ we proceed as follows. First we
sample points on each face and move the points of the value
R along the normal direction. This can be done in a selected
orientation (e.g. internal) if it is available, or both. We as-
sociate to each shifted point a contributionA(F)/N, where
A(F) is the area of the face andN is the number of sam-
pled points. If the cloud of the shifted sampled points with
associated area density is stored in a k-D tree structure it is
possible to compute efficiently the APT at arbitrary location
~x by retrieving all the points within a distanceσ from~x and
summing their density contributions.

For many applications we are interested in creating a dis-
crete map sampling the transform in a regular three dimen-
sional grid. Obviously we can do this by creating this grid
containing the mesh of interest with the desired isotropic
point spacing (voxel size)vs, and computing the APT val-
ues as described before at voxel centers. However, if we are
interested only in computing the discrete map, we can skip
the point cloud storage, directly accumulating the area den-
sity inside voxels. In this way the procedure is actually quite
similar to a "voting" method to search for sphere/cylinder
centers: each moved point increments (ofA(F)/N) the val-
ues of the voxels in a neigborhood of its target location. In
our implementation we addA(F)/N for each point in the
nearest voxel and finally perform the convolution of the ob-
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tained map with a spherical kernel of radiusσ. The resulting
algorithm can be therefore summarized as follows:
• Create a matrix APT(i,j,k) to store the discrete values of

the transform sampled at positions(i ·vs, j ·vs,k ·vs), ini-
tialized with all zeros.

• For each face F in M

– Pick N sample points on it with N proportional to A(F)
and such as point spacing is close tovs

– For each of these point~pk, update the value of the
voxel at distanceRi along the inward(outward) normal
vector~n:
APT0(int((~pk+R~n(~pk))/vs))+ = A(F)/N

• Perform a convolution of the map with a spherical uni-
tary kernelS of radiusσ or an arbitrarily chosen kernel.
APT(M,R,σ) = S(σ) ·APT0(M,R)

To compute a discrete multiscaleMAPT(i, j,k,Ri), it is then
sufficient to compute the APT at different sampled radii
Ri , with the correspondingσ(Ri), proportional to them, and
multiply the results by the corresponding scale factorα(Ri).
The ratioσi/Ri is critical: if the size of the neighborhood
where the area is integrated is small, we can have a precise
localization of maxima, but only if the symmetry is perfect.
If we want to detect approximate symmetry we should use
sufficiently large values of the ratio, searching for a trade-
off between detection and localization. In our experiments
we used typicallyσi equal to 0.5Ri . Another critical param-
eter is the sampling ofRi in the range considered: we usually
took uniformly spaced values, with sampling step lower than
the minimum spherical kernel radius applied, choice making
in our test the transform able to detect spheres (and cylin-
ders) of any radius in the range considered.

We implemented a simple C++ library with functions
able to compute MAPT and JMAPT at selected scale
ranges, both using the kD-tree approach or accumulat-
ing values on a grid and filtering with selectable ker-
nel and size. Example codes are available at the web
site http://www.andreagiachetti.it/apt. Simple volume ren-
derings of the estimated APT/JMAPT maps, visualized to-
gether with semitransparent outer geometries show the abil-
ity of transform to enhance centers of radial symmetry at the
selected scales (Fig.1 A,B) or multiple scales (Fig.1 C).
The spatial behavior of the maps does not change if large
parts of the surface are randomly removed (D) and, thanks
to progressive normal smoothing, also to noise on vertices’
location (E). These properties are still verified if MAPT is
computed on a raw, non watertight mesh captured by a whole
body scanner device (Fig.7). Furthermore, capturing "ap-
proximate" symmetries, the map characterizes also non sym-
metric shapes creating peculiar structures at different scales,
as shown in Fig.8.

6. Applications and experimental results
Defined and implemented our transforms and analyzed their
basic properties and critical parameters, we give some ex-
amples to show their practical useful applications.

Figure 7: The ability of MAPT to enhance centers of ra-
dially symmetrical parts is evident also in the case of noisy
captured meshes with large holes, as in the case of this whole
body human scan. Volume rendering of APT at three differ-
ent scales (A,B,C) and of JMAPT (D) are shown.

Figure 8: APT at different scales creates peculiar structures
also on flat and non spherical or tubular objects.

6.1. Salient points detection and characterization

Salient points related to high radial symmetry can be ex-
tracted as local maxima of APT (if we consider a specific
radius) or of MAPT/JMAPT (if we want to search for all ra-
dial symmetries in a specific range). A simple salient point
detector can be realized with the following procedure: com-
putation of the MAPT with evenly sampled radiiRn (with a
sampling step sufficiently dense compared toσ0); Gaussian
smoothing; selection of local maxima of the 4-dimensional
function with intensity higher than a chosen threshold. Note
that this threshold has a well defined meaning: we know that
the expected value for a perfect sphere is 1, independently of
the scale. We can choose the threshold as the valuet corre-
sponding to the fraction of an approximately spherical sur-
face part that we want to detect in the specific application.
Salient points can be characterized with vector descriptors,
including, for example, intensity and scale. Further descrip-
tor components can be, for example, blobness, flatness and
vesselness of the map in a neighborhood of the point that can
be estimated from the eigenvalues of the inertia matrix.

We implemented this salient points detector and tested it
on different shapes. The program computes from the input
surface a reference lengths equal to a fixed fraction of the
square root of the total surface area (

√

Atot/80π). It then
uses this value as minimum radiusR0, as step between the
tested radii and as voxel dimension in the MAPT computa-
tion. The kernel size used at the different scales is given by
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Figure 9: Toy example showing the correct localization and
characterization of salient points on spherical/cylindrical
meshes. Detected points are represented as spheres with ra-
dius equal to half the detected scale and color encoding in-
tensity (brightness) and sphericity (red component).

Figure 11: Salient points are reasonably extracted also in
largely incomplete and noisy meshes as those here (large
holes on visible sides highlighted in green), acquired with
a whole body scanner on a subject in varying poses. Only
maxima larger than a threshold(t = 0.2) are shown.

σi = 0.5Ri . The threshold used to consider the detected local
maxima salient points is 0.2.

Fig 9 shows the results obtained on a simple synthetic
mesh with three spheres of radii 0.25, 0.5 and 1 and a
cylinder with radius 0.4. Detected salient points are repre-
sented as spheres with radius equal to half the detected one,
brightness proportional to the intensity and hue reflecting the
"sphericity" computed (red if nearly spherical, blue if elon-
gated/flat). Maxima in the cylindrical part are detected (lo-
cation and spacing depending on discretization effects), but
their sphericity is low as expected.

On non perfectly symmetrical objects, salient points are
still detected due to the tolerance given byσ and their
sphericity values characterize regions around differently
shaped surfaces. Figure10shows results obtained on meshes
representing animals and humans (from the SHREC 2011
nonrigid 3D watertight data), where the extracted salient
points correspond to relevant anatomical features that are de-
tected almost independently on pose. Fig.11 shows results
obtained on three models of a girl acquired with a commer-

cial whole body scanner device. Salient points correspond-
ing to major anthropometric locations are detected and are
rather similar in different poses even if the quality of the
models is low and large holes and noise are present. We
tested also salient points extraction as maxima of the 3D
JMAPT: results are rather similar to those obtained on the
4D map, only the characterization with the inertia tensor is
less reliable due to the mixture of signals at different scales.

6.2. Lines extraction

Tubular parts of a shape should be characterized by a region
of MAPT or JMAPT with high values, but also high ves-
selness with continuous orientation. Local vesselness and
direction can be obtained in several ways analyzing local
structure of the map or using area projection directional in-
formation. We plan to perform further investigations in or-
der to define the best APT-based skeletonization algorithm,
meanwhile we used a method commonly applied in medical
images for vascular segmentation based on Frangi’s hessian-
based vesselness estimation [FNVV98]. Local Hessian at the
selected scale is also able to provide vessels direction and
lines can be obtained tracking lines of maximal vesselness in
the direction of the local vessel. To simply test the feasibility
of the centerline extraction based on APT, we implemented
the following simple procedure to compute skeletal paths:
• compute the multiscale vesselness map from the JMAPT;
• segment connected regions of non negligible vesselness

and continuous direction;
• find maxima of the map in each region and select points

with the maximum distance from this point in opposite
directions

• find the shortest path joining these points using fast
marching with vesselness dependent speed.

This simple procedure provided visually reasonable results
in tubular parts of the tested shapes. The algorithm does not
provide connected paths as other methods (it is possible,
however, to design specific heuristics to obtain such paths
if needed). The method has, however, other interesting prop-
erties: it follows approximately tubular parts independently
on local topology: in fact lines extracted do not correspond
to centerlines of connected components, but to centerlines
of cylindrical parts, so that, for example thumb skeleton is
continued within the hand model in Fig12 A. This can be a
relevant advantage for applications, as shown in Fig.12 B.
Most skeletonization methods commonly used fail to follow
tubular parts partially attached on one side (as required for
correct anthropometric evaluation), as it happens, for exam-
ple in the case of limbs in scanned human bodies. Lines ex-
tracted with publicly available implementations of methods
based on medial geodesic function [DS06] and voxel cod-
ing [LCG09] do not follow the complete arm centerline, but
the APT based method does. Furthermore, the method works
on non-watertight surfaces and it is robust against the pres-
ence of relevant holes. We show this in the examples of Fig.
13where many of the lines extracted are not changed even if
a relevant percentage of the meshes triangles are removed.
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Figure 10: Examples of salient points detected on models of animals and humans. They are represented as spheres with radius
equal to half the detected scale and color encoding intensity (brightness) and sphericity (red component).

Figure 12: Lines extracted from the JMAPT are robust
against topological noise. A: Skeletonization of a hand
model. B: Lines extracted on a human body scan. Arms of
the overweight woman are partially attached to the body.
Curve skeleton algorithms often fail to follow the arms cen-
terlines as in the case of publicly available codes based on
medial geodesic function (blue) and voxel coding (green).
Lines extracted with the APT method (red) follow the com-
plete structures.

Figure 13: Lines extracted with the JMAPT method are ro-
bust against random triangle removal. Left: lines extracted
on two models from the SHREC 2011 database. Right: lines
extracted from the same models removing50%of the origi-
nal faces.

6.3. Shape retrieval with APT histograms

MAPT captures relevant properties of the shapes at differ-
ent scales even in the case they are not spherical or tubular
(Fig 8). This suggests the possible use of its histograms for
model categorization and retrieval. The idea is to compute
histograms ofMAPT(i, j,k,M,Rn,vs,σn) at different scales

with a small number of bins and to concatenate them creat-
ing an unique feature vector. Of course, to characterize uni-
formly different shapes it is necessary to select reasonable
scales for the analysis and, if we want to classify objects in-
dependently on their size, these scales should be varied with
the object size.

Histograms are also expected to be approximately invari-
ant to rigid transformations of the shapes and to present lim-
ited variations in the case of articulated motion, especially
if we remove from the map voxels outside the analyzed ob-
ject. We tested therefore the performances of this shape re-
trieval approach on the SHREC 2011 Nonrigid 3D Water-
tight Meshes database [LGB∗11]. It is composed by 600 tri-
angle meshes, 20 models for 30 categories, each one repre-
senting the same object undergoing an articulated deforma-
tion.

For all these models we computed a corresponding
MAPT, using 8 different radii and applying the progressive
smoothing method for increasingR. As in the salient point
test we defined an adaptive procedure to compute the map
parameters, selecting first a reference length steps propor-
tional to the cube root of the volume. The minimum ra-
dius in the MAPT was then chosen as 2s and the step be-
tween tested radiis. The value ofσi was chosen, for each
scaleRi equal toRi/2. We used the values also as voxel
size for discretization. Note that these choices make the re-
trieval method scale-independent. At each scale we com-
puted the histogram ofMAPT(Ri) discretized in 12 bins
equally spaced, and the concatenation of all of them gave
a feature vector with 96 elements. These vectors were used
to estimate the shape distance matrix required by the con-
test framework using the Jeffrey divergence [PBRT99], an
information theory based distance measure. The SHREC’11
evaluation code was then used to compute, from the matrix,
the five quality measures used in the contest: nearest neigh-
bor (NN), first tier (FT), second tier (ST), e-measure (E)
and discounted cumulative gain (DCG) [SMKF04]. Table1
compares the values obtained using the HAPT based method
with top results presented in the contest. The performances
of the HAPT method resulted better than those of the con-
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NN 1-Tier 2-Tier e-Meas. DCG
HAPT 1.000 0.986 0.993 0.739 0.997

SDGDM MeshSIFT1.000 0.972 0.990 0.736 0.996
ShapeDNA 0.992 0.915 0.957 0.705 0.978

MDS-CM-BOF 0.995 0.913 0.969 0.717 0.982
MLSF 0.987 0.809 0.879 0.643 0.948

FOG+MRR 0.960 0.881 0.946 0.696 0.959
HKS 0.837 0.406 0.497 0.353 0.730

Table 1: Our method based on histograms of the area pro-
jection transform (HAPT) performs very well for shape re-
trieval even if compared with best results in the SHREC’11
nonrigid watertight contest. Note that our method is robust
against holes, topological noise and is scale invariant.

test winner [LGB∗11]. Different parameters’ choices could
result in different scores for all the methods, so it does not
mean that our method is always the best one, but certainly
it is suitable for shape retrieval applications and it is suffi-
ciently fast (our CPU implementation took about 10 sec. to
compute each histogram). It is worth noting that we obtained
perfect results for 26 of the 30 classes and clearly better
than any other method for 28 classes. Not surprisingly object
classes where the HAPT method resulted worse than other
ones are ants and spiders, probably due to similar scales of
tubular parts and similarity of articulation pattern obscuring
shape similarity. Mostly flat objects (e.g. laptops, birds) are
well recognized (Fig.15).

Really appealing features of our method are the fact that
it is perfectly scale-invariant and robust against topolog-
ical changes and holes, at least if relatively small (they
change signal intensity). Adding adaptive normal smooth-
ing proportional toR the method is also rather robust against
noise on points and normals. To test the robustness of the
HAPT descriptor for shape retrieval we created three mod-
ified datasets from SHREC models: the first by removing
approximately 10% of the original triangles from half of the
original meshes; the second adding to the vertices of half
of the original meshes a random displacement proportional
to the local triangle size; the last using one third of origi-
nal meshes, one third with holes and one third with random
displacements. On these dataset we repeated the same classi-
fication procedure and the NN classification accuracy values
were still good: 98.3%, 99,8% and 94.0% respectively.

7. Discussion

We presented a novel method for detecting radial symme-
tries of 3D shapes by computing a spatial function called
multiscale area projection transform, defined for generic sur-
faces and implemented for triangulated meshes. We have
shown its possible use for relevant tasks such as salient
points detection and centerline tracking. The results obtained
in a complex shape retrieval task with our method based on
MAPT histograms revealed its ability to capture both global
and local object features and are particularly remarkable

Figure 15: The precision vs recall plot for the whole set of
models is rather close to the ideal one, and, if done for in-
dividual classes it is exactly the ideal one for 26 of the 30
shape labels. Only for two classes (ants and spiders) the re-
sult is worse than that obtained with other techniques.

considering that method is scale invariant, can be applied
also to non watertight meshes, it is robust against topologi-
cal noise and could be used as well on dense point clouds in-
stead of meshes, projecting points along associated normals
and assuming that their density is approximately constant.

Acknowledgements: thanks to Emanuele Trucco and to
anonymous reviewers for useful suggestions.
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